APJ Abdul Kalam Technological University

Cluster 4: Kottayam

M. Tech Program in Electrical Engineering (Power Electronics)

Scheme of Instruction and Syllabus : 2015 Admissions

Cluster Centre **Rajiv Gandhi Institute of Technology, Kottayam** July 2015

APJ Abdul Kalam Technological University

(Kottayam Cluster)

M.Tech Program in Power Electronics

Scheme of Instruction

Credit requirements : 67 credits (22+19+14+12)

Normal Duration : Regular: 4 semesters; External Registration: 6 semesters;

Maximum duration : Regular: 6 semesters; External Registration: 7 semesters.

Courses: Core Courses: Either 4 or 3 credit courses; Elective courses: All of 3 credits

Allotment of credits and examination scheme:-

Semester 1 (Credits: 22)

Exam Slot	Course No:	Name	L- T - P	Internal Marks	End Semester Exam		Credits (22)
					Marks	Dura tion (hrs)	
Α	04 MA 6301	Advanced Mathematics	3-0-0	40	60	3	3
В	04 EE 6301	Power Electronic Devices & Circuits	4-0-0	40	60	3	4
C	04 EE 6201	Dynamics of Electrical Machines	3-1-0	40	60	3	4
D	04 EE 6101	Dynamic System Theory	3-0-0	40	60	3	3
E	04 EE 6XXX*	Elective - I	3-0-0	40	60	3	3
	04 GN 6001	Research Methodology	0-2-0	100	0	0	2
	04 EE 6391	Seminar - I	0-0-2	100	0	0	2
	04 EE 6390	Power Electronics Lab	0-0-2	100	0	0	1
		Total	23				22

*See List of Electives-I for slot E

List of Elective - I Courses

Exam Slot	Course No.	Course Name
E	04 EE 6003	Optimization Techniques
E	04 EE 6005	Artificial Neural Networks & Fuzzy Systems
E	04 EE 6305	Digital Simulation of Power Electronic Systems
E	04 EE 6407	Power Quality

M. Tech (Power Electronics)

Semester 2 (Credits: 19)

Exam	Course No:	Name	L- T - P	Internal Marks	End Semester Exam		Credits
Slot					Marks	Dura tion (hrs)	
А	04 EE 6302	Switched Mode Power Converters	3-1-0	40	60	3	4
В	04 EE 6602	Embedded Controllers for Power Convertors	3-0-0	40	60	3	3
C	04 EE 6206	Power Electronic Drives	3-0-0	40	60	3	3
D	04 EE 6XXX*	Elective - II	3-0-0	40	60	3	3
E	04 EE 6XXX^	Elective - III	3-0-0	40	60	3	3
	04 EE 6392	Mini Project	0-0-4	100	0	0	2
	04 EE 6394	Advanced Power Electronics Lab	0-0-2	100	0	0	1
		Total	22				19

*See List of Electives -II for slot D

^See List of Electives -III for slot E

List of Elective - II Courses

Exam Slot	Course Code	Course Name
D	04 EE 6104	Digital Control Systems
D	04 EE 6106	Stochastic Modeling and Applications
D	04 EE 6108	Optimal & Adaptive Control
D	04 EE 6300	Advanced Power Semiconductor Devices

List of Elective - III Courses

Exam Slot	Course Code	Course Name
E	04 EE 6004	Soft Computing Techniques
E	04 EE 6118	Advanced Digital Signal Processing
E	04 EE 6212	Applications of Special Electrical Machines
E	04 EE 6308	Analysis, Design and Grid Integration of Photovoltaic Systems

M. Tech (Power Electronics)

Summer Break

Fuerra	Course No:	Name		L- T - P	Internal Marks	End Semester Exam		Credits
Exam Slot						Marks	Dura tion (hrs)	
NA	04 EE 7390	Industrial Training		0-0-4	NA	NA	NA	Pass /Fail
			Total	4				0

Semester 3 (Credits: 14)

F	Course No:	Name	L- T - P	Internal Marks	End Semester Exam		Credits	
Exam Slot						Marks	Dura tion (hrs)	
Α	04 EE 7XXX*	Elective - IV		3-0-0	40	60	3	3
В	04 EE 7XXX^	Elective - V		3-0-0	40	60	3	3
	04 EE 7391	Seminar - II		0-0-2	100	0	0	2
	04 EE 7393	Project (Phase - I)		0-0-12	50	0	0	6
			Total	20				14

*See List of Electives-IV for slot A

^See List of Electives-V for slot B

List of Elective - IV Courses

Exam Slot	Course Code	Course Name
А	04 EE 7105	Robotics and Automation
А	04 EE 7205	Advanced Control of Electrical Drives
А	04 EE 7301	Modelling and Control of Power Converters
А	04 EE 7303	Power Electronic Applications in Renewable Energy

List of Elective - V Courses

Exam Slot	Course Code	Course Name
В	04 EE 7115	Data Acquisition and Signal Conditioning
В	04 EE 7419	FACTS and Custom Power Devices
В	04 EE 7511	Energy Audit, Management and Conservation
В	04 EE 7603	Advanced Controllers for Embedded Systems

M. Tech Program in Power Electronics

Semester 4 (Credits: 12)

Exam Slot	Course No:	Name	L- T - P	Internal Marks	External Evaluation Marks	Credits
NA	04 EE 7394	Project (Phase -II)	0-0-21	70	30	12
		Total	21			12
						Total: 67

Course No	Course Title	Credits	Year
04 MA 6301	Advanced Mathematics	3-0-0: 3	2015

Course Objectives:

- 1. To equip the students with advanced mathematical tools in Complex Analysis
- 2. To equip the students with advanced mathematical tools in Functional Analysis
- 3. To equip the students with advanced mathematical tools in Probability and Random Processes
- 4. To enable the students to use mathematical programming concepts in engineering optimization problems.

Syllabus

Complex Variables - Conformal Transformation, Partial differential equations - Boundary Value Problems- Functional Analysis - Vector Spaces - Linear Transformations - Random Processes - Stochastic Processes - Introduction to Mathematical Programming.

Course Outcome:

- Students who successfully complete this course will have demonstrated an ability to apply advanced mathematical tools of Complex Analysis, Functional Analysis and Random Processes.
- Students will be able to formulate, analyse and solve optimization problems in engineering applications.

Text Books:

- 1. Erwin Kreyszig, "Introductory Functional Analysis with Applications," John Wiley & Sons, 2004.
- 2. B. S. Grewal, "Higher Engineering Mathematics," Khanna Publishers.

References:

- 1. A Papoulis, "Probability, Random Variables and Stochastic Processes," 3rd edition, Mc- Graw Hill.
- 2. Kalyanmoy Deb, "Optimization for Engineering Design," PHI-2002.
- 3. Simmons D M, "Non Linear Programming for Operations Research," PHI.
- 4. Elsgoltis, "Differential Equations and Calculus of Variations," MIR publication.
- 5. Ochi M K, "Applied Probability and Stochastic Processes," John Wiley & Sons, 1992.
- 6. D G Luenberger, "Optimization by Vector Space Method," John Wiley.

COURSE NO: COURSE TITLE						
04 MA 6301	ADVANCED MATHEMATICS		3-0-0:3			
	MODULES	Contact hours	Sem. Exam Marks;%			
MODULE : 1		8	15			
Complex Variab	les and Partial Differential Equations					
Conformal Trans differential equa	Cauchy's integral formula, Poisson's integral formula, Liovilli's Theorem, Conformal Transformation, Schwarz-Christoffels transformation, Partial differential equation-Laplace equation in two dimension(Cartesian and polar), Boundary Value Problems, Green's Theorem.					
MODULE : 2		8	15			
Functional Anal	ysis					
Linear independ	Definition of Vector spaces – examples-isomorphism of vector spaces- Linear independence and basis. Dimension of vector space - Fundamentals of Normed linear spaces-Basic concept of linear transformations.					
	FIRST INTERNAL TEST					
MODULE : 3		6	15			
Random Proces	ses					
Probability con Chains.	cepts- Variables and distribution function- PDF, Markov					
MODULE : 4		8	15			
Auto Correlatio	Stochastic Processes – Characteristics- Markov Processes – Correlation- Auto Correlation – Cross Correlations– Response of linear discrete time systems to white noise.					
MODULE : 5		6	20			
Introduction to	Introduction to Mathematical Programming					
-	ramming Problems-Unconstrained optimization, optimality Search Methods: Hooke-Jeeves Pattern Search, Powell's					

COURSE NO:	COURSE TITLE		CREDITS:
04 MA 6301	04 MA 6301 ADVANCED MATHEMATICS		3-0-0:3
	MODULES	Contact hours	Sem. Exam Marks;%
conjugate direct	tion method.		
MODULE : 6		6	20
	methods: steepest descent method- Newton's method, imization: Lagrange multiplier- Kuhn Tucker conditions.		
	END SEMESTER EXAM		I

COURSE NO.	COURSE TITLE	CREDITS	YEAR	l
04 EE 6301	POWER ELECTRONIC DEVICES AND CIRCUITS	4-0-0:4	2015	l

Course Objectives:

To give the Student:-

- A foundation in the fundamentals of power electronic devices and circuits;
- Ability to design and analytical formulation of various power electronic circuits.

Syllabus

Fundamental concepts and overview of power semiconductor devices; Driver circuits; Study and Analysis phase controlled rectifiers; DC Choppers; Inverters; AC voltage controller and Cyclo converters; Introduction to matrix converters and PWM rectifiers.

Course Outcome:

Students who successfully complete this course will have an ability to understand the fundamental principles and applications of power electronics circuits; Compare and analyze the various types of power converters

Text Books:

1. Mohan, Undeland, Robbins, Power Electronics; Converters, Applications and Design. -3rd edition, John Wiley and Sons, 2003

References:

- 1. Daniel W. Hart, Power Electronics, Tata McGraw-Hill, 2011
- 2. L Umanand, Power Electronics Essentials and Applications, Wiley Publications, 2013
- 3. William Shepherd, Li Zhang, Power Converter Circuits, Marcel Decker, 2004.
- 4. V. Ramanarayanan, Course Material on Switch Mode Power Conversion, Electrical Department, IISc, Bangalore, 2006.
- 5. B K Bose, Modern Power Electronics and AC Drives, Pearson Education, 2002.
- 6. B W Williams, Power Electronics; Principles and Elements, University of Strathclyde Glasgow, 2006.
- 7. D Grahame Holmes, Thomas A Lipo, Pulse Width Modulation for Power Converters:
- 8. Principles and Practice, IEEE Press, 2003.
- 9. M H Rashid (Ed), Power Electronics Handbook: Devices, Circuits and Applications, Academic Press 2010.

COURSE NO:	COURSE TITLE:	CRE	DITS
04 EE 6301	Power Electronics Devices and Circuits	4-0)-0:4
	MODULES	Contact hours	Sem. Exam Marks; %
MODULE : 1 -	Overview of solid state devices	8	15
MOSFETS, IGBT	al switches, Power diodes, Power Transistors, Power Ts, Thyristor, GTO, TRIAC- Static and Dynamic Performance, Turn on; Turn off and Over voltage Snubbers for switching		
MODULE : 2 – I	Phase controlled Rectifiers	8	15
controlled and Inversion mode	and Three phase converters, half and full wave, fully semi controlled, Analysis with RL, RLE loads-Performance, e of operation, Effect of source inductance-Dual converters- Non circulating type		
	FIRST INTERNAL TEST		
MODULE : 3 D	C Choppers	10	15
control, Forced	choppers; two quadrant and four quadrant choppers, PWM commutation, Voltage and Current commutated choppers, nultiphase chopper.		
MODULE : 4 In	verters	10	15
Analysis with o control in inve and Bipolar n	nd Full Bridge Inverters- Single phase and Three phase. delta and star connected RL loads-Harmonics and Voltage erters; PWM principles. Sine triangle modulation, Unipolar modulation, Blanking time and maximum attainable DC utilization, output filter design, Introduction to Multilevel		
	SECOND INTERNAL TEST		
MODULE : 5 - A	AC voltage and Cyclo controllers	10	20
-	nd Three phase AC Voltage Controllers-Principle operation- and RL loads, Thyristor Controlled Reactor, Cycloconverters-		

circulating and non-circulating type-Analysis with R and RL loads.		
MODULE : 6 - Introduction to Matrix converters and PWM rectifiers	10	20
Introduction to Matrix Converters- Matrix converter switches and circuits- Control strategies, Single phase and three phase PWM rectifiers -Basic topologies - Control principles.		
END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
04 EE 6201	DYNAMICS OF ELECTRICAL MACHINES	4-0-0-4	2015

Course Objectives:

To enable the students to:

• Analyse and model dc, synchronous and induction machines.

Syllabus

Unified approach to modelling of electrical machines – Transformations to various reference frames – Application of generalised theory to model dc machines, induction machines, synchronous machines. Speed control of induction motors- Vector control

Course Outcome:

Text Books:

PS. Bhimbra, Generalized Theory of Electrical Machines, Khanna Publishers

References:

- 1. Krauss, Wasyncsuk and Sudholf, Analysis of Electrical Machines and Drive Systems, John Wiley
- 2. A. E. Fitzgerald, Kingsley, Umans, Electric Machinery, McGraw Hill
- 3. Adkins and Harley, General Theory of AC Machines
- 4. Bimal K. Bose, Modern Power Electronics & AC Drives, Pearson Education

COURSE CODE:	COURSE TITLE	CRED	DITS
04 EE 6201	DYNAMICS OF ELECTRICAL MACHINES	4-0-0): 4
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE : 1			
inductance and energy- excitation – Magne electromechanical ener Analysis of singly excit stored magnetic energy	etic circuits – Flux, flux linkage, mmf, reluctance, Self, leakage, magnetizing and mutual inductances. AC tic effect of an electromagnet- Principles of gy conversion. ed electromechanical system - General expression of , co-energy and force/torque.	12	15
phase machine inductar Generalized Machine T machines-Basic two-pol rotational voltages in t	ating Machines – Calculation of air gap mmf and per ince using physical machine data. Theory – Unified approach to the analysis of electrical e machine-Kron's primitive machine – transformer and he armature – Voltage, power and torque equation – and torque matrices - Linear transformation from three		
transformation for 3-ph DC machines – applica series and compound generator - separately	tating axes to stationary axes – power invariance – park's ase synchronous and induction machines. tion of generalized theory to separately excited, shunt, machines – sudden short circuit of separately excited excited dc motor - steady state and transient analysis – separately excited dc generator & motor. Transient • (Assignment/Project)	10	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
state analysis of salient power angle characteris Dynamic modelling of t variable form – 3-pha	s machines – generalized machine equations – Steady pole and non salient pole machines – phasor diagrams – tics – reactive power – short circuit ratio. hree phase salient pole synchronous machine in phase se to 2-phase transformation - Dynamic direct and in arbitrarily rotating reference frame – Voltage and	10	15

		Ŷ
MODULE 4: Synchronous Machines: Derivation of rotor reference frame model – Equivalent circuits. Transient analysis – sudden 3-phase short circuit at generator terminals – reactance – time constants – transient power angle characteristics. Analysis of steady state operation – torque equation. Determination of synchronous machine dynamic equivalent circuit parameters - Measurements.	6	15
INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE: 5 Three phase Induction Machine: Dynamic modelling of three phase symmetrical induction machine in phase variable form – 3-phase to 2-phase transformation – Voltage and torque equations -Application of reference frame theory to three phase symmetrical induction machine. Dynamic direct and quadrature axis model in arbitrarily rotating reference frame – Voltage and torque equations. Derivation of stationary reference frame model – Equivalent circuits. Rotor reference frame model and synchronously rotating reference frame model from arbitrarily rotating reference frame model. Analysis of steady state operation – Equivalent circuit for steady state operation – Torque-Speed characteristics. Effect of voltage and frequency variations – electric transients in induction machines.	10	20
MODULE: 6 Dynamic modelling of two phase symmetrical and asymmetrical induction machine in machine variables – Voltage and torque equations. Derivation of stator reference frame model of two phase asymmetrical induction machine- Equivalent circuits. Application of reference frame theory to two phase asymmetrical induction machine. Steady state analysis of two phase asymmetrical induction machine and equivalent circuits. Conditions for balanced operation. Dynamic d-q model of capacitor start single phase induction machine – steady	8	20
state analysis – Equivalent circuits.		

COURSE No.	COURSE NAME	L-T-P: C	YEAR
04 EE 6101	DYNAMIC SYSTEM THEORY	3-0-0: 3	2015

Pre-requisites: Nil

Course Objectives:

To give students

- A foundation in state space representation of systems.
- An ability to design observers.
- The ability to analyse the stability of linear and non linear systems.
- An introduction to the basic concepts of optimal control;

Syllabus

State space analysis and design of linear systems, Design of observers, Stability analysis using lyapnov stability criterion, Introduction to Optimal Control and dynamic programming **Course Outcome:**

At the end of the course students will be able to

- 1. Use state space method to represent and analyse a system
- 2. Analyse the stability of a nonlinear system.
- 3. Describe the basic concepts of optimal control.

References:

- 1. Benjamin C. Kuo, Control Systems, Tata McGraw-Hill, 2002.
- 2. M. Gopal, Modern Control System Theory, Tata McGraw-Hill.
- 3. Thomas Kailath, Linear System, Prentice Hall Inc., Eaglewood Clis, NJ, 1998
- 4. D. E. Kirk, Optimal Control Theory, Prentice-Hall. 1970

MODULES	: 3 em. Exam Marks (%)
MODULESHoursNMODULE : 1State Space Analysis and Design -Analysis of stabilization by pole cancellation - reachability and constructability - stabilizability - controllability - observability -grammians Linear state variable feedback for SISO systems, Analysis of stabilization by output feedback- modal controllability-formulae for feedback gain6MODULE: 2 Significance of controllable Canonical form-Ackermann's formula - feedback and zeros of the transfer function - non controllable realizations 	
State Space Analysis and Design -Analysis of stabilization by pole cancellation - reachability and constructability - stabilizability - controllability - observability -grammians Linear state variable feedback for SISO systems, Analysis of stabilization by output feedback- modal controllablility-formulae for feedback gain6MODULE: 2 Significance of controllable Canonical form-Ackermann's formula - feedback and zeros of the transfer function - non controllable realizations and stabilizability -controllable and uncontrollable modes.7	
cancellation - reachability and constructability - stabilizability - controllability - observability -grammians Linear state variable feedback for SISO systems, Analysis of stabilization by output feedback- modal controllability-formulae for feedback gain6MODULE: 2 Significance of controllable Canonical form-Ackermann's formula - feedback gains in terms of Eigen values - Mayne-Murdoch formula state feedback and zeros of the transfer function - non controllable realizations and stabilizability -controllable and uncontrollable modes.7	
Significance of controllable Canonical form-Ackermann's formula - feedback gains in terms of Eigen values - Mayne-Murdoch formula state 7 feedback and zeros of the transfer function - non controllable realizations and stabilizability -controllable and uncontrollable modes.	15
FIRST INTERNAL TEST	15
MODULE: 3 Observers -Asymptotic observers for state measurement-open loop observer-closed loop observer formulae for observer gain - implementation of the observer - full order and reduced order observers - separation principle - combined observer -controller optimality criterion for choosing observer poles.	15
MODULE: 4 Observer Design -Direct transfer function design procedures- Design using polynomial equations - Direct analysis of the Diophantine equation.	15
SECOND INTERNAL TEST	
MODULE: 5 Lyapunov Stability - definition of stability, asymptotic stability and instability - Lyapunov's second method. Lyapunov's stability analysis of LTI continuous time and discrete time systems , stability analysis of non linear system - Krasovskis theorem - variable gradient method.	20
MODULE: 6 8	20

Introduction to Optimal Control- Pontryagin's maximum principle- theory- application to minimum time, energy and control effort problems, terminal control problem. Dynamic programming- Bellman's principle of optimality, multistage decision processes. Linear regulator problem: matrix Riccati equation and its solution.	
END SEMESTER EXAM	

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 EE 6003	OPTIMIZATION TECHNIQUES	2-1-0:3	2015

Pre-requisites: NIL

Course Objectives:

To give the Student:-

- A foundation in the theory of optimization methods
- An awareness of the usefulness and limitation of optimization and the framework through which further studies/application in the area can be conducted.
- Practice in some of the well-known optimization techniques and their applicability in a real setting.

Syllabus

Fundamental concepts and overview of Optimization Theory; Linear Programming; Unconstrained Optimization Techniques; Constrained Optimization; Recent Developments in Optimization

Course Outcome:

Upon successful completion of this course, the student will be able to

- Understand the basic principles in Optimization Theory
- Formulate Optimization Problems
- Use appropriate Optimization algorithms for solving Engineering Problems
- Be familiar with Recent Developments in Optimization

Text Books:

1. Rao S. S., Engineering Optimization: Theory and Practice, Wiley, New York, 1996.

2. Pierre, D. A., Optimization Theory with Applications, Dover Publications, INC., New York, 1969. **References**:

- 1. Fox, R. L., Optimization method for Engineering Design, Addison Wesley Pub. Co., 1971
- 2. Hadley, G., Linear Programming, Addison- Wesley Pub. Co., 1963
- 3. Bazaara M. S., Sherali H.D., Shetty C.M., Non-linear Programming, John Wiley and Sons, 2006.
- 4. D.E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning, Addison-Wesly, 1989.
- 5. Glover F., Laguna M., Tabu Search, Kluwer Academic Publishers, 1997.
- 6. Marco Dorigo, Vittorio Miniezza and Alberto Colorni, "Ant System:Optimization by a colony of Cooperation Agent", IEEE transaction on system man and Cybernetics-Part B:cybernetics, Volume 26, No 1, pp. 29-41,1996.
- 7. Shi, Y. Eberhart, R. C., "A Modified Particle Swarm Optimizer", Proceedings of the IEEE International conference on Evolutionary Computation, Anchorage, AK, pp. 69-73, May 1998.

MODULES Contact Sem. Exa	Course No:	Course No: Course Title:		CREDITS
MODULESMoursMarks;MODULE : 1Statement and Classification of Optimization Problems , Overview of Optimization Techniques, Standard Form of Linear Programming Problems-Definitions and Theorems.515MODULE : 2Simplex Method-Revised Simplex Method-Duality and Dual Simplex Method-Sensitivity Analysis.815MODULE 3FIRST INTERNAL TEST615MODULE 3Necessary and Sufficient Conditions-Search Methods(Unrestricted Fibonacci and Golden)-Interpolation Methods(Quadratic, Cubic and Direct Root Method).615MODULE 4Direct Search Methods-Random Search-Pattern Search and Rosen Brock's Hill Climbing Method.715Descent Methods-Steepest Descent, Conjugate Gradient, Quasi Newton and DFE Method.920Principle of Optimality-Recurrence Relation-Computation Procedure-920	04 EE 6003	04 EE 6003 OPTIMIZATION TECHNIQUES		2-1-0:3
Statement and Classification of Optimization Problems , Overview of Optimization Techniques, Standard Form of Linear Programming Problems-Definitions and Theorems. 15 MODULE : 2 Simplex Method-Revised Simplex Method-Duality and Dual Simplex Method-Sensitivity Analysis. 8 15 MODULE 3 Necessary and Sufficient Conditions-Search Methods(Unrestricted Fibonacci and Golden)-Interpolation Methods(Quadratic, Cubic and Direct Root Method). 6 15 MODULE 4 Direct Search Methods-Random Search-Pattern Search and Rosen Brock's Hill Climbing Method. 7 15 Descent Methods-Steepest Descent, Conjugate Gradient, Quasi Newton and DFE Method. 9 20 MODULE 5 Necessary and Sufficient Conditions-Equality and Inequality Constraints-Kuhn-Tucker Conditions. Gradient Projection Method- Cutting Plane Method-Penalty Function Method (Interior and Exterior). 9 20		MODULES		Sem. Exam Marks;%
Optimization Techniques, Standard Form of Linear Programming Image: Comparison of Linear Programming Problems-Definitions and Theorems. 8 15 MODULE : 2 Simplex Method-Revised Simplex Method-Duality and Dual Simplex 8 15 Method-Sensitivity Analysis. FIRST INTERNAL TEST 8 15 MODULE 3 Necessary and Sufficient Conditions-Search Methods(Unrestricted Fibonacci and Golden)-Interpolation Methods(Quadratic, Cubic and Direct Root Method). 6 15 MODULE 4 Direct Search Methods-Random Search-Pattern Search and Rosen Brock's Hill Climbing Method. 7 15 Descent Methods-Steepest Descent, Conjugate Gradient, Quasi Newton and DFE Method. SECOND INTERNAL TEST 9 20 MODULE 5 Necessary and Sufficient Conditions-Equality and Inequality Constraints-Kuhn-Tucker Conditions. Gradient Projection Method-Cutting Plane Method-Penalty Function Method (Interior and Exterior). 9 20	MODULE : 1			
Simplex Method-Revised Simplex Method-Duality and Dual Simplex Method-Sensitivity Analysis.815FIRST INTERNAL TESTMODULE 3 Necessary and Sufficient Conditions-Search Methods(Unrestricted Fibonacci and Golden)-Interpolation Methods(Quadratic, Cubic and 	Optimization To	echniques, Standard Form of Linear Programming	5	15
Simplex Method-Revised Simplex Method-Duality and Dual Simplex 9 Method-Sensitivity Analysis. FIRST INTERNAL TEST MODULE 3 FIRST INTERNAL TEST Necessary and Sufficient Conditions-Search Methods(Unrestricted Fibonacci and Golden)-Interpolation Methods(Quadratic, Cubic and Direct Root Method). 6 15 MODULE 4 Direct Search Methods-Random Search-Pattern Search and Rosen Brock's Hill Climbing Method. 7 15 Descent Methods-Steepest Descent, Conjugate Gradient, Quasi Newton and DFE Method. 9 20 MODULE 5 Necessary and Sufficient Conditions-Equality and Inequality Constraints-Kuhn-Tucker Conditions. Gradient Projection Method-Cutting Plane Method-Penalty Function Method (Interior and Exterior). 9 20	MODULE : 2			
MODULE 3615Necessary and Sufficient Conditions-Search Methods(Unrestricted Fibonacci and Golden)-Interpolation Methods(Quadratic, Cubic and Direct Root Method).615MODULE 410715Direct Search Methods-Random Search-Pattern Search and Rosen Brock's Hill Climbing Method.715Descent Methods-Steepest Descent, Conjugate Gradient, Quasi Newton and DFE Method.715MODULE 5920Necessary and Sufficient Conditions-Equality and Inequality Constraints-Kuhn-Tucker Conditions. Gradient Projection Method- Cutting Plane Method-Penalty Function Method (Interior and Exterior).920	•		8	15
Necessary and Sufficient Conditions-Search Methods(Unrestricted Fibonacci and Golden)-Interpolation Methods(Quadratic, Cubic and Direct Root Method).615MODULE 4Direct Search Methods-Random Search-Pattern Search and Rosen Brock's Hill Climbing Method.715Descent Methods-Steepest Descent, Conjugate Gradient, Quasi Newton and DFE Method.715SECOND INTERNAL TESTMODULE 5Necessary and Sufficient Conditions-Equality and Inequality Constraints-Kuhn-Tucker Conditions. Gradient Projection Method- Cutting Plane Method-Penalty Function Method (Interior and Exterior).920Principle of Optimality-Recurrence Relation-Computation Procedure-20		FIRST INTERNAL TEST		
Fibonacci and Golden)-Interpolation Methods(Quadratic, Cubic and Direct Root Method). Image: Cubic and Direct Root Method). MODULE 4 Image: Cubic and Rosen Brock's Hill Climbing Method. 7 15 Descent Methods-Steepest Descent, Conjugate Gradient, Quasi Newton and DFE Method. 7 15 MODULE 5 SECOND INTERNAL TEST 9 20 Principle of Optimality-Recurrence Relation-Computation Procedure- 9 20	MODULE 3			
Direct Search Methods-Random Search-Pattern Search and Rosen Brock's Hill Climbing Method.715Descent Methods-Steepest Descent, Conjugate Gradient, Quasi Newton and DFE Method.715SECOND INTERNAL TESTMODULE 5 Necessary and Sufficient Conditions-Equality and Inequality Constraints-Kuhn-Tucker Conditions. Gradient Projection Method- Cutting Plane Method-Penalty Function Method (Interior and Exterior).920Principle of Optimality-Recurrence Relation-Computation Procedure-20	Fibonacci and	Golden)-Interpolation Methods(Quadratic, Cubic and	6	15
Brock's Hill Climbing Method.715Descent Methods-Steepest Descent, Conjugate Gradient, Quasi Newton and DFE Method.11SECOND INTERNAL TESTMODULE 5Necessary and Sufficient Conditions-Equality and Inequality Constraints-Kuhn-Tucker Conditions. Gradient Projection Method- Cutting Plane Method-Penalty Function Method (Interior and Exterior).920Principle of Optimality-Recurrence Relation-Computation Procedure-920	MODULE 4			
Newton and DFE Method. SECOND INTERNAL TEST MODULE 5 MODULE 5 Necessary and Sufficient Conditions-Equality and Inequality Constraints-Kuhn-Tucker Conditions. Gradient Projection Method- Cutting Plane Method-Penalty Function Method (Interior and Exterior). 9 20 Principle of Optimality-Recurrence Relation-Computation Procedure- 9 20			7	15
MODULE 5 Necessary and Sufficient Conditions-Equality and Inequality Constraints-Kuhn-Tucker Conditions. Gradient Projection Method- Cutting Plane Method-Penalty Function Method (Interior and Exterior). Principle of Optimality-Recurrence Relation-Computation Procedure-				
Necessary and Sufficient Conditions-Equality and Inequality Constraints-Kuhn-Tucker Conditions. Gradient Projection Method- Cutting Plane Method-Penalty Function Method (Interior and Exterior).920Principle of Optimality-Recurrence Relation-Computation Procedure-		SECOND INTERNAL TEST		
Constraints-Kuhn-Tucker Conditions.Gradient Projection Method- Projection Method-920Principle of Optimality-Recurrence Relation-Computation Procedure-920	MODULE 5			
	Constraints-Kuh	n-Tucker Conditions. Gradient Projection Method-	9	20
MODULE 6 7 20	MODULE 6		7	20

Rosenbrocks Rotating Coordinate Method-Tabu Search-Simulated Annealing	
Genetic Algorithm-Particle Swarm Optimization –Ant Colony Optimization-Bees Algorithm	
END SEMESTER EXAM	

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 EE 6005	ARTIFICIAL NEURAL NETWORKS AND FUZZY	3-0-0:3	2015
	SYSTEMS		

Course Objectives:

To enable the students

 To develop and apply neural network and fuzzy logic algorithms in engineering problems

Syllabus

Introduction to Artificial Neural Network, Applications, Fundamentals of Fuzzy systems, Fuzzy Design **Course Outcome:**

• Students will be able to solve engineering problems using ANN and Fuzzy Logic tools.

REFERENCES:

- 1. Martin T. Hogan , Howard B.Demuth, M, 'Neural network design'
- 2. Zuroda, J.M., 'Introduction to Artificial Neural Systems', Jaico publishing house, Bombay, 1994.
- 3. Zimmermann, H.J., 'Fuzzy set theory and its applications', Allied publishers limited, Madras, 1966
- 4. Klir, G.J., and Folge., T., 'Fuzzy sets, uncertainty and information', PHI, New Delhi, 1991.
- 5. EarlCox,, 'The Fuzzy Systems Handbook', AP professional Cambridge, MA 021395. P.

COURSE NO.	COURSE TITLE		CREDITS
04 EE 6005	04 EE 6005 ARTIFICIAL NEURAL NETWORKS AND FUZZY SYSTEMS		3-0-0:3
	MODULES	Contact hours	Sem. Exam Marks;%
neural networks separability – Ba	ation –Learning and generalisation-structure of S ADA line and Mada line-perceptrons .Linear Ick propagation – XOR function-Backpropagation ed and Hamming networks.	7	15
network – Art applications-AR1	twork-Boltzmenn machine-in and out star 1 and Art 2 nets-Neuro adaptive control architecture – Comparison layer – Recognition assification process – ART implementation –	7	15
	FIRST INTERNAL TEST		
application, con Self organizing	gnition networks, Neural network control nectionist expert systems for medical diagnosis maps-Applications of neural algorithms and ter recognition networks	6	15
-	crisp sets - Intersections of Fuzzy sets, Union of omplement of Fuzzy sets.	6	15
	SECOND INTERNAL TEST		
, ,	- Linguistic variables, Fuzzy propositions, Fuzzy ules of inference- Methods of decompositions,	8	20
MODULE : 6 Methodology of single and multip	fuzzy design - Direct & Indirect methods with ple experts	8	20

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
04 EE 6305	DIGITAL SIMULATION OF POWER ELECTRONIC SYSTEMS	3-0-0-3	2015

Course Objectives:

To enable the students:

- To develop simulation models of power electronic systems and carry out simulations using appropriate techniques and algorithms.
- To model and simulate power electronic converters accurately.
- To troubleshoot common issues in dynamic system simulations.

Syllabus

Types of simulations - Formulation of System Equations - Nonlinear circuits – Convergence issues - Transient-analysis-accuracy and stability- explicit and implicit schemes. Numerical methods for solving ODE. Stability of numerical methods - Adaptive step size - Assessment of accuracy – singular matrix problems - Steady state analysis - AC modelling of converters - Small-signal analysis - State Space averaging - Circuit averaging - Averaged switch modelling

Course Outcome:

Students will be able to develop simulation models of power electronic systems and circuits with thorough understanding about the accuracy and stability of the simulation algorithms used.

Text Books:

- 1. M. B. Patil, V. Ramanarayanan, V. T. Ranganathan, "Simulation of Power Electronic Circuits", Narosa Publishers
- Robert W. Erickson and Dragan Maksimovich, "Fundamentals of Power Electronics", 2nd Ed., Springer (India) Pvt. Ltd.

COURSE CODE:	COURSE TITLE	CREE	DITS
04 EE 6305	04 EE 6305 DIGITAL SIMULATION OF POWER ELECTRONIC SYSTEMS		0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE : 1			
Sweep Analysis, T Equation Solvers V Formulation of S Approach – App Formulation of e	imulation: Different types of simulations - DC Analysis - AC ransient Simulation, Digital/Logic Simulation. Simulation Tools: /s Circuit Simulators. ystem Equations - Modified Nodal Analysis- Sparse Tableau dication to nonlinear circuits – Newton-Raphson Method- quations- Computation Time -Convergence issues - Nonlinear	10	15
circuit equations -	- Jacobian - Practical limits		
Discretization of implicit schemes. Methods of trans	ansient simulation: time-transient-analysis-accuracy and stability-explicit and ient simulation - Numerical methods for solving ODE – Taylor ta, multistep, predictor-corrector methods.	6	15
series, nange nat	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE: 3	INTERNAL TEST I (MODULE I & 2)		1
Stability of nume	rical methods – stability of small h-stability for large h- stiff tive step size – LTE based adjustment of step size – convergence of step size.	6	15
MODULE 4:			
Transient analysis Buck converter. Some practical a Integration algori assessment of acc Steady state analy	in circuit simulation – equivalent circuit approach – RC circuit – aspects: Undamped oscillations and Ringing introduced by thms – Global error in switching circuits –round off error – uracy – singular matrix problems rsis: SSW computation – Computational efficiency	6	15
Direct method for	· · ·		
	INTERNAL TEST 2 (MODULE 3 & 4)		
averaging-circuit	ircuit modelling: Basic AC modelling approach-State space Averaging and averaged switch modelling- Modelling examples mode converters – Modelling of losses in Switches and Circuit ling the PWM.	6	20

MODULE: 6		
Circuit Averaging Concepts -Obtaining a time-invariant circuit - Circuit averaging - Perturbation and linearization - Development of circuit averaged models of buck, boost converters - Averaged switch modelling. DCM averaged switch model - Small-signal ac modelling of the DCM switch network - Developing Canonical model	8	20
Generalized switch averaging -DCM modelling of basic switch-mode converters -		
Modelling Inverters - Models of inverters using ideal switches		
END SEMESTER EXAM		•

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
04 GN 6001	RESEARCH METHODOLOGY	0-2-0:2	2015

Course Objectives:

To enable the students:

- To get introduced to research philosophy and processes in general.
- To formulate the research problem and prepare research plan
- To apply various numerical /quantitative techniques for data analysis
- To communicate the research findings effectively

Syllabus

Introduction to the Concepts of Research Methodology, Research Proposals, Research Design, Data Collection and Analysis, Quantitative Techniques and Mathematical Modeling, Report Writing.

Course Outcome:

Students who successfully complete this course would learn the fundamental concepts of Research Methodology, apply the basic aspects of the Research methodology to formulate a research problem and its plan. They would also be able to deploy numerical/quantitative techniques for data analysis. They would be equipped with good technical writing and presentation skills.

Text Books:

- 1. Research Methodology: Methods and Techniques', by Dr. C. R. Kothari, New Age International Publisher, 2004
- 2. Research Methodology: A Step by Step Guide for Beginners' by Ranjit Kumar, SAGE Publications Ltd; Third Edition

References:

- 1. Research Methodology: An Introduction for Science & Engineering Students', by Stuart Melville and Wayne Goddard, Juta and Company Ltd, 2004
- 2. Research Methodology: An Introduction' by Wayne Goddard and Stuart Melville, Juta and Company Ltd, 2004
- 3. Research Methodology, G.C. Ramamurthy, Dream Tech Press, New Delhi
- 4. Management Research Methodology' by K. N. Krishnaswamy et al, Pearson Education

04 GN 6001	COURSE TITLE	CREDITS		
	RESEARCH METHODOLOGY	0-2-0	: 2	
	MODULES	Contact Hours		
MODULE : 1				
Objectives of Resea	search Methodology: Concepts of Research, Meaning and 2 arch, Research Process, Types of Research, Type of research: rtical, Applied vs. Fundamental, Quantitative vs. Qualitative, and irical	5		
MODULE :2				
involved in definitio	search, Research Problem, Selection of a problem, Techniques n of a problem, Research Proposals – Types, contents, Ethical ke patenting, copyrights.	4		
	INTERNAL TEST 1 (MODULE 1 & 2)			
and Review, Identify Sampling fundamen	Meaning, Need and Types of research design, Literature Survey ving gap areas from literature review, Research Design Process, tals, Measurement and scaling techniques, Data Collection – nethods, Design of Experiments.	5		
analysis, Data Analy	iques: Probability distributions, Fundamentals of Statistical sis with Statistical Packages, Multivariate methods, Concepts of gression - Fundamentals of time series analysis and spectral	5		
	INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE: 5				
Methods of giving re	ciples of Thesis Writing, Guidelines for writing reports & papers, eferences and appendices, Reproduction of published material, and acknowledgement.	5		
MODULE: 6				
Documentation and	presentation tools – LaTeX, Office with basic presentations	4		

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
04 EE 6390	POWER ELECTRONICS LAB	0-0-2-1	2015

Course Objectives:

To enable the students:

- 1. To design, develop and troubleshoot Power Electronic Circuits.
- 2. To develop experimental skills for independent research.

Syllabus/List of experiments:

- 1. Firing schemes for converters.
- 2. Single Phase Semi-converter with R-L and R-L-E loads for continuous and discontinuous conduction modes.
- 3. Single phase full- converter with R-L and R-L-E loads for continuous and discontinuous conduction modes.
- 4. Three phase full-converter with R-L-E load.
- 5. Controlled and Uncontrolled rectifier with different types of filters-continuous and discontinuous modes of operation.
- 6. Transformer and Inductor design.
- 7. Voltage and current commutated choppers.
- 8. MOSFET, IGBT based Choppers.
- 9. IGBT and MOSFET based inverters.
- 10. Current source inverter.
- 11. Single phase AC voltage controller.
- 12. Transfer function of a DC Motor.
- 13. Resonant Inverters.
- 14. Microcontroller/DSP/FPGA based control of dc-dc converters.
- 15. Study of harmonic pollution by power electronics loads.

Simulation Experiments:

- 1. Simulation of single-phase Semi-converter and Fully controlled converters with R, RL and RLE Load.
- 2. Simulation of Three-phase semi converter.
- 3. Simulation of Three-phase fully controlled converter.
- 4. Simulation of Single-phase full bridge inverter.
 - 28 APJ Abdul Kalam Technological University Cluster 4 M.Tech Program in Power Electronics

- 5. Simulation of Three-phase full bridge inverter.
- 6. Simulation of PWM inverters.
- 7. Simulation of single phase and three phase AC voltage Controller.
- 8. Simulation of class A, B, C, D and E choppers.
- 9. Simulation of buck, boost and buck-boost converters.
- 10. Simulation of single phase and three phase cycloconverter.
- 11. Measurement of THD of current & voltage waveforms of controlled & uncontrolled 3-phase rectifiers.

(At least 15 experiments in the list are to be conducted in the laboratory. Additional experiments and simulation assignments may also be developed by the department. Suitable simulation tools may be used for simulation studies. Use of open source tools such as Python, SciLab, Octave, gEDA etc are encouraged).

Course Outcome:

After completing this course the students will be able to develop control algorithms in digital control platforms such as DSP/FPGA/Microcontrollers.

The students will be able to develop electrical drive systems from fundamental principles.

The students will acquire sufficient experimental skills to carry out independent experimental research.

COURSE NO.	COURSE TITLE	L-T-P:C	YEAR
04 EE 6407	POWER QUALITY	3-0-0:3	2015

Pre-requisites: Nil

Course Objectives:

- To familiarise the various power quality characterizations, sources of power quality issues and recommend standards related to power quality
- To understand the effects of various power quality phenomena in various equipments.
- To understand and to provide solutions for power factor correction through various power factor correction techniques.
- To gain knowledge on active harmonic filtering and to provide solutions to grounding and wiring problems

Syllabus

Introduction; power quality; voltage quality; classification of power quality issues; power acceptability curves; Harmonics; effect of power system harmonics on power system equipment and loads; Modelling of networks and components under non-sinusoidal conditions; Power factor improvement; Active Harmonic Filtering; Dynamic Voltage Restorers; Grounding and wiring; NEC grounding requirements

Course Outcome:

Upon completion of course on Power quality the students

- Will be able to identify and classify power quality disturbances.
- Will be able to analyse the causes of power quality issues caused by components in the system.
- Will be able to provide feasible solutions for power factor correction.
- Will be able to develop the harmonic mitigation methods.

Text Books:

- 1. Heydt G T, "Electric power quality".
- 2. Math H. Bollen, "Understanding Power Quality Problems".

References:

- 1. Arrillaga J, "Power System Quality Assessment", John wiley, 2000.
- 2. Arrillaga J, Smith B C, Watson N R & Wood A R, "Power System Harmonic Analysis", Wiley, 1997.
- Ashok S, "Selected Topics in Power Quality and Custom Power", Course book for STTP, 2004,
 Surya Santoso, Wayne Beaty H, Roger C. Dugan, Mark F. McGranaghan, "Electrical Power System Quality ", MC Graw Hill, 2002.

COURSE PLAN

COURSE NO:	COURSE TITLE	CRE	DITS:
04 EE 6407	POWER QUALITY	3-0	-0:3
MODULES		Contact hours	Sem. Exam Marks; %
MODULE : 1		7	15
phenomena-cla and standards-	ower quality-voltage quality-overview of power quality ssification of power quality issues-power quality measures THD-TIF-DIN-C-message weights- flicker factor-transient currence of power quality problems.		
MODULE : 2		5	15
Power accepta practices.	bility curves-IEEE guides, standards and recommended		
	FIRST INTERNAL TEST		
MODULE : 3		8	15
Harmonics-individual and total harmonic distortion-RMS value of a harmonic waveform-triplex harmonics-important harmonic introducing devices-SMPS-Three phase power converters-arcing devices - saturable devices-harmonic distortion of fluorescent lamps-effect of power system harmonics on power system equipment and loads.			
MODULE : 4		8	15
transmission a electric machi	etworks and components under non-sinusoidal conditions- and distribution systems-shunt capacitors-transformers- nes-ground systems-loads that cause power quality er quality problems created by drives and its impact on		
	SECOND INTERNAL TEST		
MODULE : 5		6	20
	improvement- Passive Compensation. Passive Filtering. nance. Impedance Scan Analysis.		
for Single Phas	actor Corrected Single Phase Front End, Control Methods e APFC, Three Phase APFC and Control Techniques, PFC eral Single Phase and Three Phase Converter. static var		

compensators-SVC and STATCOM.		
MODULE : 6	8	20
Active Harmonic Filtering-Shunt Injection Filter for single phase , three- phase three-wire and three-phase four-wire systems . d-q domain control of three phase shunt active filters uninterruptible power supplies- constant voltage transformers- series active power filtering techniques for harmonic cancellation and isolation .Dynamic Voltage Restorers for sag, swell and flicker problems.		
Grounding and wiring-introduction-NEC grounding requirements-reasons for grounding-typical grounding and wiring problems-solutions to grounding and wiring problems.		
END SEMESTER EXAMINATION		

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
04 EE 6390	POWER ELECTRONICS LAB	0-0-2-1	2015

Course Objectives:

To enable the students:

- 3. To design, develop and troubleshoot Power Electronic Circuits.
- 4. To develop experimental skills for independent research.

Syllabus/List of experiments:

- 16. Firing schemes for converters.
- 17. Single Phase Semi-converter with R-L and R-L-E loads for continuous and discontinuous conduction modes.
- 18. Single phase full- converter with R-L and R-L-E loads for continuous and discontinuous conduction modes.
- 19. Three phase full-converter with R-L-E load.
- 20. Controlled and Uncontrolled rectifier with different types of filters-continuous and discontinuous modes of operation.
- 21. Transformer and Inductor design.
- 22. Voltage and current commutated choppers.
- 23. MOSFET, IGBT based Choppers.
- 24. IGBT and MOSFET based inverters.
- 25. Current source inverter.
- 26. Single phase AC voltage controller.
- 27. Transfer function of a DC Motor.
- 28. Resonant Inverters.
- 29. Microcontroller/DSP/FPGA based control of dc-dc converters.
- 30. Study of harmonic pollution by power electronics loads.

Simulation Experiments:

- 12. Simulation of single-phase Semi-converter and Fully controlled converters with R, RL and RLE Load.
- 13. Simulation of Three-phase semi converter.
- 14. Simulation of Three-phase fully controlled converter.
- 15. Simulation of Single-phase full bridge inverter.
 - 33 APJ Abdul Kalam Technological University Cluster 4 M.Tech Program in Power Electronics

- 16. Simulation of Three-phase full bridge inverter.
- 17. Simulation of PWM inverters.
- 18. Simulation of single phase and three phase AC voltage Controller.
- 19. Simulation of class A, B, C, D and E choppers.
- 20. Simulation of buck, boost and buck-boost converters.
- 21. Simulation of single phase and three phase cycloconverter.
- 22. Measurement of THD of current & voltage waveforms of controlled & uncontrolled 3-phase rectifiers.

(At least 15 experiments in the list are to be conducted in the laboratory. Additional experiments and simulation assignments may also be developed by the department. Suitable simulation tools may be used for simulation studies. Use of open source tools such as Python, SciLab, Octave, gEDA etc are encouraged).

Course Outcome:

After completing this course the students will be able to develop control algorithms in digital control platforms such as DSP/FPGA/Microcontrollers.

The students will be able to develop electrical drive systems from fundamental principles.

The students will acquire sufficient experimental skills to carry out independent experimental research.

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 EE 6302	SWITCHED MODE POWER CONVERTERS	4-0-0: 4	2015

Pre-requisites: [04 EE 6303] Power Electronics Devices and Circuits

Course Objectives:

To give the Student:-

- A comprehensive study of various topologies of switched mode power converters;
- Ability to design and develop power electronic system control.

Syllabus

DC-DC non-isolated switched mode converters; Buck, Boost, Buck-Boost converters, CUK and SEPIC; State space modelling; Switched Mode Power Converters, Fly back, Forward Converter, Push-Pull, Half and Full Bridge Converters; Voltage and Current control methods for converters; Resonant Converters, ZVS and ZCS; Switched Mode inverters, PWM techniques, Space Vector Modulation; Introduction to Multilevel inverters.

Course Outcome:

Students who successfully complete this course will have an ability to understand various topologies of switched mode power converters; Design and develop power electronic system control.

Text Books:

- 1. Mohan, Undeland, Robbins, Power Electronics; Converters, Applications and Design. -3rd edition, John Wiley and Sons, 2003
- 2. Abraham I Pressman, Switching Power Supply Design. McGrawHill

References:

- 1. Daniel M Mitchell, DC-DC Switching Regulator Analysis. McGraHill
- 2. Daniel W. Hart, Power Electronics, Tata McGraw-Hill, 2011
- 3. William Shepherd, Li Zhang, Power Converter Circuits, Marcel Decker, 2004.
- 4. Prof. V. Ramanarayanan, Course Material on Switch Mode Power Conversion, Electrical Department, IISc, Bangalore, 2006.
- 5. B K Bose, Modern Power Electronics and AC Drives, Pearson Education, 2002.
- 6. B W Williams, Power Electronics; Principles and Elements, University of Strathclyde Glasgow, 2006.
- 7. D Grahame Holmes, Thomas A Lipo, Pulse Width Modulation for Power Converters:
- 8. M H Rashid (Ed), Power Electronics Handbook: Devices, Circuits and Applications, Academic Press 2010.

COURSE PLAN

COURSE NO:	Course Title:	CRE	DITS
04 EE 6302	SWITCHED MODE POWER CONVERTERS	3-1-0: 4	
	MODULES	Contact hours	Sem. Exam Marks; %
MODULE : 1		12	15
DC-DC switched mode converters, DC steady state principles, Buck, Boost, Buck-Boost converters, CUK- Basic Operation with Waveforms (Continuous and discontinuous operation)- Voltage and current relationship switching stresses - switching and conduction losses - optimum switching frequency – Output voltage ripple; State space modeling			
MODULE : 2		8	15
Push-Pull and Forward Converter Topologies - Basic Operation. Waveforms - Flux Imbalance Problem and Solutions - Transformer Design -Output Filter Design -Switching Stresses and Losses -Forward Converter MagneticsVoltage Mode Control			
	FIRST INTERNAL TEST		
MODULE : 3		8	15
Magnetics, Out Power Limits, mode operatio	Bridge Converters; Basic Operation and Waveforms- tput Filter, Flux Imbalance, Switching Stresses and Losses, Voltage Mode Control, Flyback Converter; discontinuous n, waveforms, Control, Magnetics - Switching Stresses and vantages - Continuous Mode Operation, Waveforms, Relations.		
MODULE : 4		8	15
Control Advant	ge and current Mode Control of SMPS, Current Mode cages, Current Mode vs. Voltage Mode, Tolerance Band and variable Frequency control		
MODULE : 5		10	20
	verters- Classification, Basic Resonant Circuit Concepts, nt Converter, Resonant Switch Converter, Zero Voltage		

Switching - Zero current switching, ZVS Clamped Voltage Topologies, Resonant dc-link inverters.		
MODULE : 6	10	20
Switched Mode Inverters; PWM Techniques – Natural Sampled PWM (Sinusoidal PWM) – Regular Sampled PWM, Space Vector Modulation; Multilevel inverters – Concepts, Types; Diode clamped, Flying capacitor, Cascaded – Principle of operation, comparison, PWM techniques.		
END SEMESTER EXAM		1

COURSE CODE	COURSE TITLE	L-T-P-C	YEAR	
04 EE 6602	EMBEDDED CONTROLLERS FOR POWER CONVERTERS	3-0-0-3	2015	

Pre-requisites:

Course Objectives:

To give the Student:-

- A foundation in the fundamentals of PIC 18F4580 controller based system design;
- Design and develop various power converter circuits using embedded system;
- Introduction to the advanced TMS320F2407 DSP controller for developing embedded system.

Syllabus

PIC 18F4580 - Architecture, Programming, fundamental of embedded system design; Typical functions of PIC18F4580 microcontrollers in power electronic systems; Use of microcontroller in power converters, control; Introduction to TMS 320LF2407, Architecture details, basic programming

Course Outcome:

The students who successfully complete this course will have an ability develop embedded controllers for power electronic based system.

Text Books:

- Muhammad Ali Mazidi, Rolind D. Mckinlay, Danny Causey. "PIC microcontroller and Embedded Systems – using assembly and C for PIC18" 13th impression, Pearson, 2013
- Han Way Huang, "PIC Microcontroller, An introduction to software and hardware interfacing", Delmar – 2007
- 3. George Terzakis, Introduction to C Programming With the TMS320LF2407A DSP Controller, Create Space Independent Publishing Platform, February 2011

References:

- 1. Richard H. Barnett, Larry O'Cull, Sarah Alison Cox, Embedded C Programming and the Microchip PIC, Volume 1, Thomson Delmar Leaning
- 2. Kenjo.T, "Power electronics for microprocessor Age", Clarendon press, Oxford, 1999
- 3. GourabSen Gupta, Subhas Chandra Mukhopadhyay, "Embedded Microcontroller Interfacing, Designing Integrated Projects", Springer, 2010
- 4. Harprit Singh Sandhu, Making PIC Microcontroller Instruments and Controllers, McGraw-Hill Professional , 2004
- 5. Harprit Singh Sandhu, Running Small Motors with PIC Microcontrollers, McGraw-Hill Professional, 2004
- 6. Sen M. Kuo, Woon-Seng S. Gan, Digital Signal Processors: Architectures, Implementations, And Applications, Pearson Education , 2004
- 7. Phil Lapsley, Jeff Bier, Amit Shoham, Edward A. Lee, DSP Processor fundamentals: Architectures and Features, IEEE Press -1997, Wiley India Pvt Ltd
- 8. H.A. Toliyat, S.Campbell, DSP based Electro Mechanical Motion Control, CRC Press-2004
- 9. Avtar Singh and S. Srinivasan, Digital Signal Processing, Thomson/Brooks/Cole, 2004
- 10. PIC18F4580 Data Sheet DS39637D, Microchip Technology Inc., 2004

11. TMS320LF2407 Data Sheet , Texas Instrument, September 2003

COURSE NO:	Course Title:	CRE	DITS
04 EE 6602	Embedded Controllers for Power Converters	3-0)-0:3
	MODULES	Contact hours	Sem. Exam Marks; %
MODULE:1- N	Aicrochip PIC 18F4580:	10	15
Interrupt struct modules, Maste	PIC 18F4580 microcontroller, PIC memory organization, sure, Timers / Counters, Capture / Compare / PWM rr Synchronous Serial Port (MSSP) module, USART A / D le, Comparator module.		
MODULE : 2 – P	IC 18F Programming:	6	15
	ssing modes. Instruction set, General Programming – .LST eneration for applications using MpLab IDE		
	FIRST INTERNAL TEST		
MODULE : 3		6	15
systems: Meas	ns of PIC18F4580 microcontrollers in power electronic urement of voltage, current, speed, power and power cy measurement, PWM implementation; Interfacing LCD rd Interfacing		
Overview of Ze	Use of PIC18F4580 microcontroller in power converters: ro Crossing Detectors, Generation of gating signals for erters and chopper circuit, Control of AC/DC electric drives.	6	15
	SECOND INTERNAL TEST		
controller, Pov	C18F4580 based system control: Implementation of PI, PID wer quality/power factor correction, Solar Power PPT) - Miscellaneous examples.	6	20
MODULE : 6 - In	troduction to TMS 320LF2407:	8	20
	DSP architecture- computational building blocks - Address Program control and sequencing- Parallelism, Pipelining		
	TMS320LF2407 - Addressing modes- I/O functionality, PWM, Event managers- Elementary Assembly Language		

COURSE PLAN

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 EE 6206	ARTIFICIAL NEURAL NETWORKS AND FUZZY	3-0-0: 3	2015
	SYSTEMS		

Pre-requisites:

Course Objectives:

- 1. To inspire the students with interest, excitement, and urge to learn the subject of power electronic drives.
- 2. To understand the fundamental concepts, theories and methods in power electronic drives for DC motor, Induction Motor and Synchronous Motor
- 3. To introduce the purpose of learning important aspects in power electronic drives for meeting the requirement of various professional field applications

Syllabus

Introduction; Components of electrical Drives ; DC motor drives and their performance; closed loop control; P, PI and PID controllers; Induction motor drives ; Basic principle of vector control ; Indirect vector control ; Synchronous motor drives.

Course Outcome:

The student will demonstrate the ability to understand the various power electronics drives and its operation.

Text Books:

- 1. R. Krishnan, 'Electrical Motor Drives', PHI-2003
- 2. G.K.Dubey, 'Power semiconductor controlled drives', Prentice Hall- 1989

References:

- 1. G.K.Dubey, 'Fundamentals of Electrical Drives', Narosa- 1995
- 2. S.A. Nasar, Boldea , 'Electrical Drives', Second Edition, CRC Press 2006
- 3. M. A. ElSharkawi , 'Fundamentals of Electrical Drives' , Thomson Learning -2000
- 4. W. Leohnard, 'Control of Electric Drives',-Springer- 2001
- 5. Murphy and Turnbull, 'Power Electronic Control of AC motors', Pergamon Press
- 6. Vedam Subrahmaniam, 'Electric Drives', TMH-1994

COURSE NO:	COURSE TITLE	CRE	DITS	
04 EE 6206	POWER ELECTRONIC DRIVES	3-0	-0:3	
	MODULES	Contact hours	Sem. Exam Marks;%	
converter, Controllers -Dyn values of drive load - Four quad	f electrical Drives – Electric machines, Power amics of electric drive - Torque equation - Equivalent parameters- Components of load torques types of drant operation of a motor -Steady state stability – in - Classes of motor duty- Determination of motor	8	15	
MODULE : 2		7	15	
permanent mag	their performance (shunt, series, compound, net motor, universal motor, dc servo motor)-Braking dynamic braking, plugging			
dc motors-Analy	is of separately excited motor – Converter control of sis of separately excited & series motor with single- -phase converters			
	FIRST INTERNAL TEST			
Converter ratings separately excited converters – Sen	nalysis of chopper controlled dc drives – and closed loop control – Transfer function of DC motors Linear transfer function model of power sing and feedback elements – Current and speed D controllers – Response comparison	8	15	
	drives: Slip power recovery scheme – Torque and Forque slip characteristics-Closed loop control of s.	6	15	
	SECOND INTERNAL TEST			
MODULE : 5		5	20	

Vector control – Basic principle of vector control Direct & quadrature axis transformation - Indirect vector control.		
MODULE : 6 Synchronous motor drives Speed control of synchronous motors – Adjustable frequency operation of synchronous motors - Principles of synchronous motor control – Voltage source inverter drive with open loop control - Self- controlled synchronous motor with electronic commutation – Self-controlled synchronous motor drive using load commutated thyristor inverter.	8	20
END SEMESTER EXAM		

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 EE 6104	DIGITAL CONTROL SYSTEMS	3-0-0:3	2015

Pre-requisites:

Course Objectives:

To give students

- an introduction digital control system and its analysis
- a foundation for the classical and advanced design of digital control system.

Syllabus

Introduction to Digital Control systems, Analysis of Digital Control Systems, Classical Design of Digital Control Systems, Advanced Design of Digital Control Systems

Course Outcome:

At the end of the course students will be able to design and analyse a digital control systems

REFERENCE

- 1. B. C. Kuo, Digital Control Systems (second Edition),Oxford University Press, Inc., New York, 1992.
- 2. G. F. Franklin, J.D. Powell, and M.L. Workman, Digital control of Dynamic Systems, Addison-Wesley Longman, Inc., Menlo Park, CA, 1998.
- 3. M. Gopal, Digital Control and State Variable Methods, Tata McGraw Hill Publishing Company, Third Edition, 2004 .
- 4. John F. Walkerly, Microcomputer architecture and Programs, John Wiley and Sons Inc., New York, 1981.
- 5. K. Ogata, Discrete Time Control Systems, Addison-Wesley Longman Pte. Ltd., Indian Branch, Delhi, 1995.
- 6. C. H. Houpis and G.B. Lamont, Digital Control Systems, McGraw Hill Book Company, 1985.
- 7. C. L. Philips and H.T. Nagle, Jr., Digital Control System Analysis and Design, Prentice Hall, Inc., Englewood Cliffs, N.J., 1984

COURSE NO: COURSE TITLE		CREDITS	
04 EE 6104	04 EE 6104 DIGITAL CONTROL SYSTEMS		3-0-0: 3
	MODULES	Contact hours	Sem. Exam Marks;%
sampled signals	on and quantisation- Sampling process- nodelling- Data reconstruction and filtering of - Hold devices, Z transform and inverse Z cionship between S- plane and Z- plane	6	15
Discretisation M	ation-Solution by recursion and z-transform- lethods, Digital control systems- Pulse transfer nsform analysis of closed loop and open loop	8	15
	FIRST INTERNAL TEST		
linear digital cor analysis- Root l	sfer function- Multirate z-transform - Stability of htrol systems- Stability tests, Steady state error oci - Frequency domain analysis- Bode plots- hin margin and phase margin.	8	15
controllers- D transformation-	eedback compensation by continuous data Digital controllers-Design using bilinear Root locus based design, Digital PID controllers- DI design- Case study examples using MATLAB	8	15
	SECOND INTERNAL TEST		

MODULE : 5		
State variable models- Interrelations between z- transform models and state variable models- Controllability and Observability - Response between sampling instants using state variable approach-Pole placement using state feedback	5	20
MODULE : 6		
Servo Design- State feedback with Integral Control-Deadbeat Control by state feedback and deadbeat observers	7	20
Dynamic output feedback- Effects of finite word length on controllability and closed loop pole placement- Case study examples using MATLAB		
END SEMESTER EXAM		

		1	
COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 EE 6106	STOCHASTIC MODELLING AND APPLICATIONS	3-0-0:3	2015

Pre-requisites: Nil

Course Objectives:

- To imbibe the essentials of probability models leading up to stochastic processes;
- Acquire the necessary skills in building stochastic models using Markov chains;
- To develop an understanding of queuing systems under different configurations;
- Acquire problem solving skills in applying ingrained subject skills to real world problems.

Syllabus

Discrete probability distributions, Continuous probability densities, Distribution functions, Expectations, moments, Characteristic functions, Moment generating functions, Random variables, Convergence concepts, Law of large numbers, Central limit theorem – Bernoulli trials, Discrete and continuous independent trials, Stochastic processes-Markov chains, Computation of equilibrium probabilities, Stationary distribution and Transient distribution of Markov chains, Poisson processes – Exponential distribution and applications, Birth-death processes and applications.

Course Outcome:

- Have an appreciation of the power of stochastic processes and its range of applications;
- Master essential stochastic modelling tools including Markov chains and queuing theory; Ability to formulate and solve problems which involve setting up stochastic models.

Text Books:

- 1. Hole, P.G., Port, S.C., and Stone C.J.,' Introduction to Probability Theory', Indian Edition Universal Book Stall, New Delhi, 1998.
- 2. Hole P.G., Port, S.C., and Stone C.J.,' Introduction to Stochastic Process', Indian Edition Universal Book Stall, New Delhi, 1981

References:

- 1. Alberto Leon-Garcia; Probability, Statistics and Random process for Electrical Engineering, Pearson Third Edition, 2008.
- 2. Miller and Freund, "Probability", PHI India, 2005.

Course No:	Course Title	CR	EDITS
04 EE 6106	Stochastic Modelling and Applications	3-0	0-0: 3
	MODULES	Contact hours	Sem. Exam Marks;%
	es- Discrete probability distributions, Continuous es, Conditional probability	8	15
	outions and densities, Distribution functions, Multiple and joint distributions	7	15
	FIRST INTERNAL TEST		
• •	nents, Characteristic functions, Moment generating ce of random variables, Convergence Concepts	6	15
-	pers, Discrete and continuous random variables, Central moulli trials, Discrete and continuous independent trials	7	15
	SECOND INTERNAL TEST		
	ses-Markov chains – Transient analysis, Computation of bilities, Stationary distribution and Transient rkov chains	8	20
MODULE : 6 Poisson processes, Exponential distribution and applications, Birth-death processes and applications		6	20
	END SEMESTER EXAM		

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 EE 6108	OPTIMAL AND ADAPTIVE CONTROL	3-0-0:3	2015

Pre-requisites:

[04 EE 6101] DYNAMIC SYSTEM THEORY / [04 EE 6103] SYSTEM THEORY

Course Objectives:

To equip the students with:

- 1. Ability to analyse optimal control problems
- 2. Knowledge in adaptive control system

Syllabus

Formulation of optimal control problem, Variational approach to optimal control problem , Dynamic programming, Discrete and continuous linear regulator problems, Adaptive systems

Course Outcome:

Students will be able to

- 1. Analyze optimal control problems.
- 2. Implement adaptive control techniques.

REFERENCES:

- 1. Donald E. Kirk, Optimal Control Theory, An introduction, Prentice Hall Inc.
- 2. Sage, A. P. Optimum Systems Control, Prentice Hall.
- 3. Hsu and Meyer, Modern Control . Principles and Applications, McGraw Hill.
- 4. Yoan D. Landu, Adaptive Control (Model Reference Approach), Marcel Dekker

COURSE NO:	COURSE TITLE:	CREDI	тѕ
04 EE 6108	Optimal and Adaptive Control Theory	3-0-0	:3
	MODULES	Contact hours	Sem. Exam Mark s;%
 performance n variations- Fundar Functional of sing 	ons Introduction. Optimal control problem formulation. neasure for optimal control problems -Calculus of nental concepts le function. Euler - Language equation . Transversality	7	15
conditions. MODULE : 2			
Vector case wit	h various boundary conditions. Piecewise, smooth ained extremisation of functionals.	7	15
	ach to optimal control problems. Necessary conditions I with different boundary conditions.		
	FIRST INTERNAL TEST		
principle. State in control Effort prob	nming: Principle of optimality. Application to multi	6	15
MODULE : 4 Optimal control ex curse of dimension	xample. Recurrence relation of dynamic programming. nality.	6	15
-	ulator problem. Hamilton-Jacobi Bellman equation. regulator problem.		
	SECOND INTERNAL TEST		

MODULE : 5 Introduction to Adaptive Control – Effects of Process Variations – Adaptive Control Schemes – Adaptive Control Problems – Non Parametric Identification – Classifications of Adaptive Control Systems.	8	20
MODULE : 6 Different Configurations and Classifications of MRAC – Direct and Indirect MRAC – MIT Rule for Continuous Time MRAC Systems - Lyapunov Approach for Continuous – Time and Discrete Time MRAC Systems.	8	20
END SEMESTER EXAM		

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 EE 6300	ADVANCED POWER SEMICONDUCTOR DEVICES	3-0-0: 3	2015

Pre-requisites: NIL

Course Objectives:

To give the Student:-

- The fundamentals of static and dynamic characteristics of current controlled & voltage controlled power semiconductor devices
- Ability to realize appropriate solid state device for various power electronic applications

Syllabus

Power switching devices overview; Attributes of an ideal switch; Power handling capability, Construction, Device Physics, static and dynamic characteristics of Power diodes, BJT, Thyristors, Power MOSFETs and IGBTs; Basics of GTO, MCT, FCT, RCT and IGCT; Isolation, snubber circuits, Gate drives circuitry for power devices; Thermal Protection.

Course Outcome:

Students who successfully complete this course will have an ability to understand various power electronics devices such as SCR, TRIAC, DIAC, IGBT, GTO etc. Also able to realize appropriate Power Electronics devices in Choppers, Inverters, Converters to create an optimum design.

Text Books:

- 1. Mohan, Undeland, Robbins, Power Electronics; Converters, Applications and Design. -3rd edition, John Wiley and Sons, 2003
- 2. Power Electronics , P. C. Sen

References:

- 1. Kassakian J G et al, "Principles of Power Electronics", Addison Wesley, 1991.
- 2. B W Williams, Principles and Elements of Power Electronics, University of Strathclyde, Glasgow, 2006.
- 3. M D Singh, K B Khanchandani, "Power Electronics", Tata McGraw Hill, 2001.
- 4. Daniel W. Hart, Power Electronics, Tata McGraw-Hill, 2011
- 5. M H Rashid (Ed), Power Electronics Handbook: Devices, Circuits and Applications, Academic Press 2010.

COURSE NO.	COURSE TITLE	CRE	DITS
04 EE 6300	ADVANCED POWER SEMICONDUCTOR DEVICES	3-0	-0:3
	MODULES	Contact hours	Sem. Exam Marks; %
application rec (SOA); Device	MODULE : 1 Power switching devices overview – Attributes of an ideal switch, application requirements, circuit symbols; Power handling capability – (SOA); Device selection strategy – On-state and switching losses – EMI due to switching		15
characteristics BJT's – Consti characteristics;	 Types, forward and reverse characteristics, switching rating. Shottky Diode ruction, Device Physics, static characteristics, switching Negative temperature co-efficient and secondary eady state and dynamic models of BJT, Power Darlington 	7	15
	FIRST INTERNAL TEST		
and switching other types; s	nysical and electrical principle underlying operation, Gate characteristics; converter grade and inverter grade and series and parallel operation; Comparison of BJT and ady state and dynamic models of Thyristor	8	15
construction, t	Ts and IGBTs – Principle of voltage controlled devices, ypes, Device physics, Static and Switching Characteristics, nd dynamic models of MOSFET and IGBTs, Basics of GTO, and IGCT	7	15
	SECOND INTERNAL TEST		

		Ŷ
MODULE : 5	7	20
Necessity of isolation, pulse transformer, optocoupler – Gate drives circuit: SCR, MOSFET, IGBTs and base driving for power BJT. Over voltage, over current and gate protections; Design of snubbers.		
MODULE : 6	6	20
Thermal Protection: Heat transfer – conduction, convection and radiation; Cooling – liquid cooling, vapour – phase cooling; Guidance for hear sink selection – Thermal resistance and impedance -Electrical analogy of thermal components, heat sink types and design – Mounting types		
END SEMESTER EXAM		<u> </u>

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 EE 6004	SOFT COMPUTING TECHNIQUES	3-0-0: 3	2015

Pre-requisites: Nil

Course Objectives:

To enable the student to apply neural and fuzzy logic based analysis tools in optimization of power systems and power electronic problems.

Syllabus

Neural Network- Different architectures-supervised learning-perceptron- Adaline-Back Propagation-Caushy's and Boltsman's training methods-Simulated annealing-Unsupervised learning-Competitive learning-Kohenon self organizing network-Hebbian learning-Hopfield network- ART network-NNW applications in control.

Fuzzy Logic- Basic concepts-set theoretic operations-membership function fuzzy rules-fuzzy reasoning fuzzy inference systems Mamdani and Sugeno type-defuzzification- fuzzy controllers applications in electric drives and power system. **Neuro Fuzzy-** Modelling - Neuro fuzzy inference system-controllers-Back propagation through recurrent learning- Reinforced learning.

Genetic Algorithms-Basic concepts-design issues - modelling hybrid models.

Course Outcome:

Students who successfully complete this course will have demonstrated an ability to apply soft computing techniques in engineering applications.

Text Books:

- 1. Leandro Nunes de Castro," Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications".
- 2. "Philip D Wasserman, "Neural Computing" Van Nostrand Reinhold, 1993
- 3. Chapman & Hall/CRC, 2006.1. S Rajasekharan, VijayaLakhmi Pai, Neural Network, Fuzzy logic and Genetic Algorithm, PHI, 2002

References:

- 1. Melanie Mitchell, "An Introduction to Genetic Algorithms", MIT Press- 1996.
- 2. Mohamed E. El-Hawary, "Modern Heuristic Optimisation technique –Theory and application to power system," IEEE Press.
- 4. J S R Lang, C T Sun, Mizutani, Neuro Fuzzy and Soft Computing.
- 5. David E Goldberg, Genetic Algorithms
- 6. G. Rozenberg, T. Bäck, J. N. Kok ,"Handbook of Natural Computing", Springer Verlag- 2010.
- 7. Xin-She Yang, "Nature-Inspired Metaheuristic Algorithms", Luniver Press 2010

8. J. R. Koza: "Genetic Programming: On the programming of computers by means of natural selection", MIT Press- 1992.

COURSE NO:	Course Title		CREDITS
04 EE 6004	Soft Computing Techniques		3-0-0:3
	MODULES	Contact hours	Sem. Exam Marks;%
MODULE : 1			
	rk- Different architectures-supervised learning-perceptron- Propagation-Caushy's and Boltsman's training methods- ealing.	10	15
MODULE : 2			
Unsupervised network-Hebbi applications in		8	15
	FIRST INTERNAL TEST		
MODULE : 3			
fuzzy rules-fuzz	asic concepts-set theoretic operations-membership function zy reasoning fuzzy inference systems Mamdani and Sugeno ation- fuzzy controllers applications in electric drives and	6	15
MODULE : 4			
-	Modelling - Neuro fuzzy inference system-controllers-Back rough recurrent learning- Reinforced learning.	8	15
	SECOND INTERNAL TEST		
MODULE : 5			
Genetic Algori Convergence, Selection, Tru	ithm Application : Modern Heuristic Search Techniques thm-IntroductionEncoding-Fitness Function, Premature Slow Finishing,Basic Operators, Selection-Tournament ncation Selection, Linear Ranking Selection, Exponential ion, Elitist Selection, Proportional Selection-Crossover,	5	20
MODULE : 6		5	20

END SEMESTER EXAM	
Mutation, Control Parameters Estimation, Niching Methods, Parallel Genetic Algorithms-Application in Drives Tuning of membership function using genetic algorithm. Application of GA to neural network Tuning of controllers.	

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 EE 6118	ADVANCED DIGITAL SIGNAL PROCESSING	3-0-0: 3	2015

Pre-requisites:

Course Objectives:

- To introduce basic concept behind digital signal processing;
- To study the design and realization of IIR and FIR filters;
- To study the different methods for power spectrum estimation;
- To study multirate signal processing fundamentals

Syllabus

Discrete time signals and systems: Basic principles of signal processing, sampling process, Properties of systems, Discrete time Fourier transform, Z transform; Frequency domain representations: Discrete Fourier transform and its properties, linear and circular convolution, radix 2 DIT FFT, Radix2 DIF FFT; IIR filter design: Analog butter worth functions for various filters, analog to digital transformation, Structures for realizing digital IIR filters; Design of FIR filters: Design of FIR filters using Fourier series method, Design of FIR filters using windows, Design using frequency sampling, realization of FIR filters; Spectral estimation: Estimation of spectra from finite duration signals, Nonparametric methods, Parametric methods; Multirate digital signal processing: Interpolation and Decimation, Sampling rate conversion by a rational factor, Polyphase filter structures, Multistage implementation of multirate system

Course Outcome:

The students will be able to

- Understand the basics of digital signal processing and various frequency domains
- Understand the design and implementation of IIR and FIR filters.
- Understand the various methods for spectral estimation.
- Understand the concept behind multirate signal processing.

Text Books:

1. John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, PHI, New Delhi, 1997.

2. Mitra, *Digital Signal Processing*, 3e, Tata McGraw –Hill Education New Delhi,2007

References:

- 1. Alan V. Oppenheim, Ronald W. Schafer, Discrete time Signal Processing , PHI, New Delhi, 1997.
- 2. Monson H. Hayes, Statistical Digital Signal Processing and Modelling, Wiley, 2002.
- 3. ES Gopi, Algorithm collections for Digital Signal Processing Applications using Matlab, Springer, 2007.
- 4. Roberto Cristi, Modern Digital Signal Processing, Thomson Brooks/Cole (2004)

			EDITS
04 EE 6118	ADVANCED DIGITAL SIGNAL PROCESSING	3-0)-0: 3
	MODULES	Contact hours	Sem. Exam Marks;%
MODULE : 1			
Building blocks and sampling th	gnals and systems: Basic principles of signal processing- of digital signal processing. Review of sampling process heorem. Properties of systems-linearity, causality, time lution and stability	8	15
	ain representation – Discrete time Fourier transform es-Z transform and inverse Z transform		
MODULE : 2			
	transform-inverse discrete Fourier transform-properties nd circular convolution-overlap and add method-overlap d	6	15
FFT - radix 2 DIT	FFT-Radix2 DIF FFT		
	FIRST INTERNAL TEST	I	
MODULE : 3			
worth functions	ign: Design of IIR filters from analog filter - analog butter s for various filters - analog to digital transformation- rence and forward difference approximations-impulse prmation.	6	15
	ealizing digital IIR filters-Direct form 1-direct form II- cade structure, lattice structure.		
MODULE : 4			
Design of FIR fi	ilters-Design of FIR filters using Fourier series method- lters without using windows- Design of FIR filters using nusing frequency sampling- realization of FIR filters.	6	15
	SECOND INTERNAL TEST	I	

MODULE : 5		
Spectral estimation-Estimation of spectra from finite duration signals, Nonparametric methods-Periodogram, Modified periodogram, Bartlett, Welch and Blackman-Tukey methods.	9	20
Parametric methods – ARMA model based spectral estimation, Yule- Walker equation and solution, Solution using Levinson-Durbin algorithm.		
MODULE : 6		
Multirate digital signal processing- Mathematical description of change of sampling rate – Interpolation and Decimation, Decimation by an integer factor, Interpolation by an integer factor, Sampling rate conversion by a rational factor,	7	20
Polyphase filter structures, Multistage implementation of multirate system		
END SEMESTER EXAM		1

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 EE 6212	APPLICATIONS OF SPECIAL ELECTRICAL MACHINES	3-0-0:3	2015

Pre-requisites: Nil

Course Objectives:

To provide the student a comprehensive study of construction, principle of operation and performance of special electric machines and drives

Syllabus

Constructional features, principle of operation, characteristics and control of Stepper Motors; Switched Reluctance Motors; Synchronous Reluctance Motors; Permanent Magnet Brushless DC Motors; Permanent Magnet Synchronous Motors; Servo Motors .

Course Outcome:

Students who successfully complete this course will have demonstrated an ability to understand the fundamental concepts of different special electrical machines; apply the knowledge of control and operating characteristics in different fields of application.

Text Books:

1. E. G. Janardanan, Special Electric Machines, Prentice Hall India PVT. LTD. NEW DELHI

2. K. Venkataratnam, *Special Electric Machines*, Orient Blackswan PVT. LTD., NEW DELHI **References**:

- 1. Kenjo T, Sugawara A, Stepping Motors and Their Microprocessor Control, Clarendon Press, Oxford
- 2. Miller T J E, Brushless Permanent Magnet and Reluctance Motor Drives, Clarendon Press, Oxford
- 3. Kenjo T, Power Electronics for the Microprocessor Age, Oxford University Press

Course Plan

Course Code:	Course Name:	CREDITS		
04 EE 6212	Applications of Special Electrical Machines	3-0-0: 3		
	MODULES	Contact hours	Sem. Exam Marks; %	
MODULE:1-S	tepping Motors	8	15	
Constructional features, principle of operation, modes of excitation, single phase stepping motors, torque production in variable Reluctance (VR) stepping motor, Dynamic characteristics, Drive systems and circuit for open loop control, Closed loop control of stepping motor, microprocessor based controller.				
MODULE : 2 -		6	15	
	ctance Motors: Constructional features, principle of ue equation, Power controllers, Characteristics and control.			
Microprocessor	based controller. Sensor less control.			
	FIRST INTERNAL TEST			
MODULE : 3		6	15	
air gap Motors	eluctance Motors: Constructional features: axial and radial . Operating principle; Reluctance torque, Phasor diagram, eristics. Control of synchronous reluctance motor			
MODULE : 4 -		8	15	
Difference betw Optical sensors magnet brushle	gnet Brushless DC Motors: Commutation in DC motors, veen mechanical and electronic commutators, Hall sensors, , Multiphase Brushless motor; Square wave permanent ess motor drives, Torque and emf equation, Torque-speed Controllers-Microprocessor based controller. Sensorless			
	SECOND INTERNAL TEST			
MODULE : 5		8	20	
	gnet Synchronous Motors: Principle of operation, EMF, d torque expressions, Phasor diagram, Power controllers,			

Torque speed characteristics, Self-control, Vector control, Current control schemes - Sensor less control		
MODULE : 6 - Servo Motors	6	20
Construction, principle of operation, control of DC servo motor, Construction, principle of operation, control of AC servo motor		
END SEMESTER EXAM		

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 EE 6308	ANALYSIS, DESIGN AND GRID INTEGRATION OF	3-0-0:3	2015
	PHOTOVOLTAIC SYSTEMS		

Pre-requisites: Nil

Course Objectives:

- To familiarize Solar PV System
- To analyze grid integrated PV System
- To learn about PV system over current protection of solar system
- To understand various faults of solar power system

Syllabus

Fundamental concepts and overview of Solar Cells ; MPPT Algorithm; Study of solar panel; Analysis of Grid Connected solar PV systems; Protection of solar PV system

Course Outcome:

Students who successfully complete this course will able to analyze and design the grid integration of photovoltaic systems

Text Books:

- 1. A K Mukerjee, Niveditha Thakur : Photovoltaic Systems Analysis and Design, PHI
- 2. Chetan Singh Solanki: Solar Photovoltaics Fundametals, Technologies and Applications, PHI
- 3. Amir Naser Yazdani and Reza Iravani: *Voltage Sourced Converters in Power Systems modeling, control and Applications*, WILEY, IEEE Press
- 4. Photovoltaic System Over current Protection by cooper bussmann

References:

- 1. A. Goetzberger V.U. Hoffmann : *Photovoltaic Solar Energy Generation* Springer Series in optical sciences
- 2. Antonio Luque and Steven Hegedus : *Handbook of Photovoltaic Science and Engineering*, WILEY

04 EE 6308 Analysis, Design and Grid Integration of Photovoltaic Systems 3-0-0: 3 MODULES Contact hours Sem. Exam Marks;% MODULE : 1 - Solar Cells: 6 15 Generation of Photo Voltage – Light Generated Current – I V Equation of Solar Cells: Solar Cell Characteristics. 6 15 Design of Solar Cells: Upper Limit of Cell Parameters- Losses in Solar Cells - Diode Equivalent Model 7 15 Effect of Variation of Solar Insolation and Temperature on Efficiency. 7 15 Solar PV Modules from Solar Cells - Series and Parallel Connection of Cells – Design and Structure of PV Module – Number of Solar Cells in a Module – Wattage of Modules - VV Module – I-V Curve and P-V Curve of Module 7 15 Effect of Variation of Solar Insolation and Temperature – Partial Shading of a Solar Cell and a Module. 7 15 Effect of Variation of Solar Insolation and Temperature – Partial Shading of a Solar Cell and a Module. 7 15 MODULE: 3 Mismatch Losses of PV Modules and Temperature – Partial Shading of a Solar Cell and a Module. 8 15 MODULE: 4 Standalone PV System Configurations 8 15 Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load. 8 15 A Grid Interactive PV System - Phase , Frequency Matching and Voltage Conside	Course No:	Course Title		CREDITS
hoursMarks;%MODULE : 1 - Solar Cells:6Generation of Photo Voltage – Light Generated Current – I V Equation of Solar Cells - Solar Cell Characteristics.6Design of Solar Cells: Upper Limit of Cell Parameters- Losses in Solar Cells - Diode Equivalent Model7MODULE: 2 - Solar Cell Energy Conversion Efficiency7Solar PV Modules From Solar Cells - Series and Parallel Connection of Cells - Design and Structure of PV Module – Number of Solar Cells in a Module - Wattage of Modules - PV Module Power Output - I - V Equation of PV Module - Ratings of PV Module – I-V Curve and P-V Curve of Module7Effect of Variation of Solar Insolation and Temperature – Partial Shading of a Solar Cell and a Module.7Batteries for PV systems – Factors affecting battery performance MPPT Algorithms: Perturb and Observe- Incremental Conductance, Mechanical Tracking - Single Axis Tracking – Dual Axis Tracking.8MODULE: 4 Standalone P V System Configurations815Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load.815A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules- Design of EMI Filters.15	04 EE 6308	04 EE 6308 Analysis, Design and Grid Integration of Photovoltaic Systems		3-0-0: 3
Generation of Photo Voltage – Light Generated Current – I V Equation of Solar Cells- Solar Cell Characteristics. Design of Solar Cells: Upper Limit of Cell Parameters- Losses in Solar Cells - Diode Equivalent Model MODULE: 2 – Solar Cell Energy Conversion Efficiency 7 15 Effect of Variation of Solar Insolation and Temperature on Efficiency. 7 15 Solar PV Modules from Solar Cells - Series and Parallel Connection of Cells – Design and Structure of PV Module – Number of Solar Cells in a Module – Wattage of Modules- PV Module Power Output - I- V Equation of PV Module - Ratings of PV Module – I-V Curve and P-V Curve of Module 7 15 MODULE: 3 Mismatch Losses of PV Modules 7 15 Effect of Variation of Solar Insolation and Temperature – Partial Shading of a Solar Cell and a Module. 7 15 Batteries for PV systems – Factors affecting battery performance MPPT Algorithms: Perturb and Observe- Incremental Conductance, Mechanical Tracking - Single Axis Tracking – Dual Axis Tracking. 8 15 Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load. 8 15 A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules-Design of EMI Filters. 15		MODULES		
of Solar Cells- Solar Cell Characteristics. Design of Solar Cells: Upper Limit of Cell Parameters- Losses in Solar Cells - Diode Equivalent Model MODULE: 2 – Solar Cell Energy Conversion Efficiency Fiffect of Variation of Solar Insolation and Temperature on Efficiency. Solar PV Modules from Solar Cells - Series and Parallel Connection of Cells – Design and Structure of PV Module – Number of Solar Cells in a Module – Wattage of Modules- PV Module – Number of Solar Cells in a Module – Wattage of Modules- PV Module – Number of Solar Cells in a Module – Wattage of Modules- PV Module Power Output - I - V Equation of PV Module - Ratings of PV Module – I-V Curve and P-V Curve of Module FIRST INTERNAL TEST MODULE: 3 Mismatch Losses of PV Modules FIRST internation of Solar Insolation and Temperature – Partial Shading of a Solar Cell and a Module. Batteries for PV systems – Factors affecting battery performance MPPT Algorithms: Perturb and Observe- Incremental Conductance, Mechanical Tracking - Single Axis Tracking – Dual Axis Tracking. MODULE: 4 Standalone P V System Configurations Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load. A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules- Design of EMI Filters.	MODULE : 1 - S	olar Cells:	6	15
Cells - Diode Equivalent Model 7 15 MODULE: 2 – Solar Cell Energy Conversion Efficiency 7 15 Effect of Variation of Solar Insolation and Temperature on Efficiency. 7 15 Solar PV Modules from Solar Cells - Series and Parallel Connection of Cells – Design and Structure of PV Module – Number of Solar Cells in a Module – Wattage of Modules- PV Module Power Output - I - V Equation of PV Module - Ratings of PV Module – I-V Curve and P-V Curve of Module 7 15 MODULE: 3 Mismatch Losses of PV Modules 7 15 Effect of Variation of Solar Insolation and Temperature – Partial Shading of a Solar Cell and a Module. 7 15 Batteries for PV systems – Factors affecting battery performance MPPT Algorithms: Perturb and Observe- Incremental Conductance, Mechanical Tracking - Single Axis Tracking – Dual Axis Tracking. 8 15 Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load. 8 15 A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules- Design of EMI Filters. 15				
Effect of Variation of Solar Insolation and Temperature on Efficiency. Solar PV Modules from Solar Cells - Series and Parallel Connection of Cells – Design and Structure of PV Module – Number of Solar Cells in a Module – Wattage of Modules- PV Module Power Output - I- V Equation of PV Module - Ratings of PV Module – I-V Curve and P-V Curve of Module FIRST INTERNAL TEST MODULE: 3 Mismatch Losses of PV Modules 7 15 Effect of Variation of Solar Cell and a Module. 7 15 Batteries for PV systems – Factors affecting battery performance MPT Algorithms: Perturb and Observe- Incremental Conductance, Mechanical Tracking - Single Axis Tracking – Dual Axis Tracking. 8 15 MODULE: 4 Standalone PV System Configurations 8 15 Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load. 8 15 A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules-Design of EMI Filters. 15	-			
Solar PV Modules from Solar Cells - Series and Parallel Connection of Cells – Design and Structure of PV Module – Number of Solar Cells in a Module – Wattage of Modules- PV Module Power Output - I- V Equation of PV Module - Ratings of PV Module – I-V Curve and P-V Curve of ModuleFIRST INTERNAL TESTMODULE: 3 Mismatch Losses of PV Modules715Effect of Variation of Solar Insolation and Temperature – Partial Shading of a Solar Cell and a Module.7Batteries for PV systems – Factors affecting battery performanceMPPT Algorithms: Perturb and Observe- Incremental Conductance, Mechanical Tracking - Single Axis Tracking – Dual Axis Tracking.8MODULE: 4 Standalone P V System Configurations815Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load.8A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules- Design of EMI Filters.	MODULE: 2 – Se	olar Cell Energy Conversion Efficiency	7	15
Cells – Design and Structure of PV Module – Number of Solar Cells in a Module – Wattage of Modules- PV Module Power Output - I- V Equation of PV Module - Ratings of PV Module – I-V Curve and P-V Curve of ModuleFIRST INTERNAL TESTMODULE: 3 Mismatch Losses of PV Modules715Effect of Variation of Solar Insolation and Temperature – Partial Shading of a Solar Cell and a Module.715Batteries for PV systems – Factors affecting battery performance815MODULE: 4 Standalone PV System Configurations815Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load.815A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules- Design of EMI Filters.815	Effect of Variati	on of Solar Insolation and Temperature on Efficiency.		
Equation of PV Module - Ratings of PV Module – I-V Curve and P-V Image: Curve of Module FIRST INTERNAL TEST MODULE: 3 Mismatch Losses of PV Modules 7 Effect of Variation of Solar Insolation and Temperature – Partial Shading of a Solar Cell and a Module. 7 Batteries for PV systems – Factors affecting battery performance Image: Conductance, Mechanical Tracking - Single Axis Tracking – Dual Axis Tracking. MODULE: 4 Standalone P V System Configurations 8 15 Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load. 8 15 A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules-Design of EMI Filters. 15	Cells – Design and Structure of PV Module – Number of Solar Cells in a			
MODULE: 3 Mismatch Losses of PV Modules715Effect of Variation of Solar Insolation and Temperature – Partial Shading of a Solar Cell and a Module.715Batteries for PV systems – Factors affecting battery performance715MPPT Algorithms: Perturb and Observe- Incremental Conductance, Mechanical Tracking - Single Axis Tracking – Dual Axis Tracking.815Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load.815A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules- Design of EMI Filters.15	Equation of PV	Module - Ratings of PV Module – I-V Curve and P-V		
MODULE: 3 Mismatch Losses of PV Modules715Effect of Variation of Solar Insolation and Temperature – Partial Shading of a Solar Cell and a Module.715Batteries for PV systems – Factors affecting battery performance715MPPT Algorithms: Perturb and Observe- Incremental Conductance, Mechanical Tracking - Single Axis Tracking – Dual Axis Tracking.815Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load.815A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules- Design of EMI Filters.15		FIRST INTERNAL TEST		
Effect of Variation of Solar Insolation and Temperature – Partial Shading of a Solar Cell and a Module.Batteries for PV systems – Factors affecting battery performanceMPPT Algorithms: Perturb and Observe- Incremental Conductance, Mechanical Tracking - Single Axis Tracking – Dual Axis Tracking.MODULE: 4 Standalone P V System Configurations8Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load.8A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules- Design of EMI Filters.	MODULE: 3 M	ismatch Losses of PV Modules	7	15
MPPT Algorithms: Perturb and Observe- Incremental Conductance, Mechanical Tracking - Single Axis Tracking – Dual Axis Tracking.MODULE: 4 Standalone P V System Configurations8Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load.8A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules- Design of EMI Filters.	Effect of Varia	tion of Solar Insolation and Temperature – Partial		
Mechanical Tracking - Single Axis Tracking – Dual Axis Tracking.8MODULE: 4 Standalone P V System Configurations8Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load.8A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules- Design of EMI Filters.	Batteries for PV	systems – Factors affecting battery performance		
Design PV powered DC fan and pump without battery- Design of Standalone System with Battery and AC or DC Load. A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules- Design of EMI Filters.	-			
Standalone System with Battery and AC or DC Load. A Grid Interactive PV System - Phase , Frequency Matching and Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules- Design of EMI Filters.	MODULE: 4 St	andalone P V System Configurations	8	15
Voltage Consideration – Operation of a Grid Interactive Inverter – Protection Against Islanding and Reverse Power Flow – AC Modules- Design of EMI Filters.				
SECOND INTERNAL TEST	Voltage Consid Protection Agai	eration – Operation of a Grid Interactive Inverter – nst Islanding and Reverse Power Flow – AC Modules-		

UNIV	RSTTY
K	U.
)

20
20
_

COURSE CODE	COURSE NAME	L-T-P-C	YEAR
04 EE 6394	ADVANCED POWER ELECTRONICS LAB	0-0-2-1	2015

Pre-requisites: 04 EE 6201 Dynamics of Electrical Machines

04 EE 6303 Power Electronic Devices and Circuits

Course Objectives:

To enable the students:

- 1. To design, develop and troubleshoot Electrical Drive Systems.
- 2. To design, develop and troubleshoot Power Electronic Circuits.
- 3. To develop experimental skills for independent research

Syllabus/List of experiments:

- 1. Closed loop control of high frequency of DC DC converters
- 2. Closed loop control of BLDC motors.
- 3. Closed loop control of Switched reluctance motors.
- 4. Vector control of three phase induction motors.
- 5. Vector control of three phase synchronous motors.
- 6. Closed loop control of PMSM.
- 7. Sensor less control of motors.
- 8. Use of Microcontrollers, DSP and FPGA for the control motors.
- 9. Closed loop control of converter fed DC motor drives
- 10. Closed loop control of chopper fed DC motor drives
- 11. VSI fed three phase induction motor drive using V/f control
- 12. Three phase synchronous motor drive
- 13. Closed loop control of Brushless DC motors
- 14. Closed loop control of Switched reluctance motors.
- 15. Closed loop control of permanent magnet synchronous motors.
- 16. Use of Microcontrollers, DSP and FPGA for the control of motors.
- 17. Simulation of sine PWM & space vector PWM
- 18. Simulation of 3-phase induction motor drive using V/f control
- 19. Simulation of Vector control of 3-phase induction motor
- 20. Simulation of Direct Torque Control of 3-phase induction motor
- 21. Simulation of Brushless DC Motor drive
- 22. Simulation of STATCOM & DSTATCOM
- 23. Simulation of Active Power Filter, DVR
- 24. Simulation of UPQC, UPFC, TCSC
- 25. Simulation of matrix converter based control of induction motor

(At least 15 experiments in the list are to be conducted in the laboratory. Additional experiments and simulation assignments may also be developed by the department. Suitable simulation tools may be used for simulation studies. Use of open source tools such as Python, SciLab, Octave, gEDA etc are encouraged).

Course Outcome:

- 1. After completing this course the students will be able to develop control algorithms in digital control platforms such as DSP/FPGA/Microcontrollers.
- 2. The students will be able to develop advanced drive systems from fundamental principles.

The students will acquire sufficient experimental skills to carry out independent experimental research.

COURSE NO.	COURSE TITLE	L-T-P:C	YEAR
04 EE 7105	ROBOTICS AND AUTOMATION	3-0-0:3	2015

Pre-requisites: Nil

Course Objectives:

- To learn the specifications necessary to model Industrial Robots.
- To apply prior knowledge of coordinate systems to specific transformation matrices relevant to robotics.
- To learn the complexities of linear and revolute motions in the course of system planning.
- Ability to use the Lagrange-Euler method as an alternative to determine kinematic solutions.

Syllabus

Geometric configuration of robots, Manipulators, Drive systems, Sensors, End effectors, Control systems, Programming languages, Robotic vision, Direct and inverse kinematics, Rotation matrices, Euler angle-representation, Homogenous transformation, Denavit Hartenberg representation, Lagrange – Euler formulation, Kinetic energy, Potential energy, Equations of motion, Generalized D'Alembert equations of motion, Trajectory planning, Joint interpolation, Cartesian path trajectories, Control of robot manipulators, PID control, Computed torque technique, Near minimum time control, Variable structure control , Non-linear decoupled feedback control, Resolved motion control and adaptive control.

Course Outcome:

- To be familiar with general robot specifications.
- Will be able to conceptualize the different frames of reference used in robots.
- Calculate the composite transformation matrices involved when the manipulator progresses through different dimension modes.
- Assess the detailed forward and reverse kinematics for a 2-link assembly.
- Be able to formulate the kinetic energy and potential energy calculations while applying Lagrange–Euler method to solve the 2-DOF, 2-link kinematics problem.
- Versed in the application of higher order polynomials in trajectory planning.

Text Books:

- 1. Fu K S, Gonazlez R C and Lee C S G, 'Robotics Control, Sensing, Vision and Intelligence', McGraw-Hill, 1987.
- 2. Saeed B Niku, 'Introduction to Robotics, Analysis, Systems and Applications', PearsonEducation, 2002.

References:

- 1. Wesley, E Sryda, 'Industrial Robots: Computer Interfacing and Control', PHI, 1985.
- 2. Asada and Slotine, 'Robot Analysis and Control', John Wiley and Sons, 1986.

3. Groover M P, Mitchell Weiss, 'Industrial Robotics Technology Programming and Applications', Tata McGraw-Hill, 1986.

Course No:	Course Title:		CREDITS:
04 EE 7105	Robotics and Automation		3-0-0:3
	MODULES	Contact hours	Sem. Exam Marks;%
MODULE : 1		10	15
Introduction	to Robotics, Geometric configuration of robots, , Robot programming languages and applications, to robotic vision, Drive systems, Internal and external effectors, Control systems.		
MODULE : 2		6	15
	inematics, Direct and inverse kinematics, Rotation matrices, tation matrices.		
	FIRST INTERNAL TEST	L	
MODULE : 3		8	15
-	representation, Homogenous transformation, Denavit- epresentation, Various arm configurations.		
MODULE : 4		6	15
	er formulation, Joint velocities, Kinetic energy, Potential on equations, Generalized D'Alembert equations of motion		
	SECOND INTERNAL TEST	<u> </u>	
MODULE : 5		6	20
Trajectory pla	nning, Joint interpolation, Cartesian path trajectories		
MODULE : 6		6	20
Near-minimu	obot Manipulators, PID control, Computed Torque control, m time control, Variable structure control, Non-linear eedback control, Resolved motion control and adaptive		
	END SEMESTER EXAM	1	

[COURSE CODE	COURSE NAME	L-T-P-C	YEAR
	04 EE 7205	ADVANCED CONTROL OF ELECTRICAL DRIVES	3-0-0-3	2015

Pre-requisites:

- 1. 04 EE 6201 Dynamics of Electrical Machines
- 2. 04 EE 6303 Power Electronic Devices and Circuits

Course Objectives:

To enable the students:

• To analyse and design advanced control schemes of electrical drives

Syllabus

Dynamic Modelling of induction machines - Generalized model in arbitrary reference frame - Stator reference frame model, Rotor reference frame model, Synchronously rotating reference frame model – Vector Control - Vector controlled induction motor drive – Stator flux oriented vector control - Indirect rotor flux oriented vector control scheme - Flux weakening operation - Speed controller design. Doubly fed motor drive - Static Kramer and Scherbius Drives - Direct torque control of induction motor. Permanent magnet synchronous motor drives - Vector control strategies – PMBLDC Drives – Switched Reluctance Motor Drives

Course Outcome:

Students will be able to develop Simulation models of AC Motors and drive systems. Student will be able to develop basic designs of control loops in vector control drives.

Text Books:

R. Krishnan, "Electric Motor Drives," PHI.

References:

- 1. D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, OxfordUniversity Press, 1996.
- 2. B. .K Bose, Modern Power Electronics and AC Drives, Pearson-2002.Leonhard, Control of Electric Drives, Springer-2001.
- 3. Leonhard, Control of Electric Drives, Springer
- John Chiasson, Modelling and High Performance Control of Electric Machines, Wiley- IEEE Press, 2005.
- 5. I. Boldea, S A Nasar, Electric Drives, 2ndedition, CRC Press, 2006.
- 6. K. Rajashekara, Sensorless Control of AC motors, IEEE Press, 1996.
- 7. I. Boldea, S. A. Nasar, Vector Control of AC Drives, CRC Press, 1992.
- J. Holtz, Sensorless Control of Induction Motor Drives, Proceedings of the IEEE, August 2002, PP 1359-1394

COURSE PLAN			
COURSE CODE:	COURSE TITLE	CRED	OITS
04 EE 7205	ADVANCED CONTROL OF ELECTRICAL DRIVES	3-0-	0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE : 1			
transformation –pow frame – electromagr rotor reference fram equations in flux lir	c Modelling of induction machines – 3-phase to 2-phase ver equivalence – generalized model in arbitrary reference netic torque – derivation of stator reference frame model, ne model, synchronously rotating reference frame model – nkages- Simulation of starting characteristics of induction /SIMULINK (Assignment/Project).	10	15
field oriented contro rotor flux and torque inverters - Stator flux control scheme - Dy operation - Speed co	tor controlled induction motor drive – Principle of vector or I – direct rotor flux oriented vector control – estimation of e– implementation with current source and voltage source coriented vector control - Indirect rotor flux oriented vector namic simulation - Selection of Flux level - Flux weakening ontroller design – simulation of vector control of induction /SIMULINK (Assignment/Project).	8	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
	speed control by rotor rheostat – static Kramer drive – ement – Static Scherbius drive – Modes of operation	4	15
reduction of torque a	ol of induction motor – principle – control strategy — and flux ripple – Comparison of DTC and FOC – Simulation of cor using MATLAB/SIMULINK (Assignment/Project)	6	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
	Synchronous Motor (PMSM) drives: Types of permanent machines – Model of PMSM – Vector control strategies	6	20
MODULE: 6			
constant mutual flux weakening operation	stant torque-angle control, unity power factor control, -linkages control, optimum torque per ampere control- field – sensor-less PMSM drive. tor – modelling – drive scheme – Switched reluctance motor	8	20
	END SEMESTER EXAM		

COURSE CODE	COURSE TITLE	L-T-P-C	YEAR	
04 EE 7301	MODELLING AND CONTROL OF POWER CONVERTERS	3-0-0-3	2015	

Pre-requisites: [04 EE 6302] SWITCHED MODE POWER CONVERTERS

Course Objectives:

- 1. To enable the students to model switched mode
- 2. To enable the students to design control loops of power converters.
- 3. To enable the students to design reactive elements used in various power converters.

Syllabus:

Buck, Boost and Buck-Boost SMPS Topologies, continuous and discontinuous modes of operation, switching and conduction losses - Push-Pull and Forward Converter Topologies, Voltage Mode Control. - Half and Full Bridge Converters - Flyback Converter, different modes - Modelling and Control of SMPS, steady state analysis, Dynamic modelling - Design of reactive elements used in SMPS ,inductor design , Design of transformer, Design of capacitors.

Course Outcome:

Student will have the ability to model Power converters and design the various reactive elements used in different topologies.

Text Books:

- Robert W. Erickson and Dragan Maksimovic, "Fundamentals of Power Electronics", Springer, 2nd edition, 2001
- 2. Ned Mohan et.al, Power Electronics., John Wiley and Sons 2006

References:

- 1. Abraham I Pressman, "Switching Power Supply Design". McGraw Hill Publishing Company, 2001.
- 2. Daniel M Mitchell, "DC-DC Switching Regulator Analysis", McGraw Hill Publishing Company-1988.
- 3. Otmar Kilgenstein, "Switched Mode Power Supplies in Practice", John Wiley and Sons, 1994.
- 4. Keith H Billings "Handbook of Switched Mode Power Supplies", McGraw Hill Publishing Company, 1989.
- 5. Mark J Nave, "Power Line Filter Design for Switched-Mode Power Supplies", Van Nostrand Reinhold, New York, 1991
- H.W. Whittington, B.W. Flynn, D.E. Macpherson, "Switched Mode Power Supplies", John Wiley & Sons Inc., 2nd Edition, 1997

COURSE NO:	COURSE TITLE	CRE	DITS
04 EE 7301	MODELLING AND CONTROL OF POWER CONVERTERS	3-0-0:3	
	MODULES	Contact hours	Sem. Exam Marks;%
MODULE : 1 Buck, Boost, Buck-Boost SMPS Topologies: Basic Operation- Waveforms – continuous and discontinuous modes of operation - Switching stresses - switching and conduction losses - optimum switching frequency-Practical voltage, current and power limits - design relations - voltage mode control principles		8	15
MODULE : 2 Push-Pull and Forward Converter Topologies: Basic Operation - Waveforms - Flux Imbalance Problem and Solutions -Output Filter Design - Switching Stresses and Losses - Forward Converter Magnetics -Voltage Mode Control		6	15
	FIRST INTERNAL TEST		
Magnetics- Ou	Bridge Converters: Basic Operation and Waveforms – tput Filter-Flux Imbalance-Switching Stresses and Losses- /oltage Mode Control.	6	15
Control- Mag	rter : Discontinuous mode operation – waveforms – netics- Switching Stresses and Losses- Disadvantages- ode Operation- Waveforms- Control- Design Relations.	6	15
	SECOND INTERNAL TEST		
second order s (CCM & DC	Control of SMPS: Basic concepts & steady state analysis of switched mode power converters: PWM dc-dc converters SM) – operating principles, constituent elements, comparison & selection criteria-Dynamic modelling,	8	20

analysis and control of second order switch mode power converters.		
MODULE : 6	8	20
Design of reactive elements used in SMPS : Design constraints of reactive elements in power electronic systems –inductor design – design constraints – step by step procedure - examples- Design of transformer-Design of capacitors for power electronic applications, input filter requirement.		
END SEMESTER EXAM		

COURSE CODE	COURSE TITLE	L-T-P-C	YEAR
04 EE 7303	POWER ELECTRONIC APPLICATIONS IN RENEWABLE ENERGY	3-0-0-3	2015

Pre-requisites: [04 EE 6303] Power Electronics Devices and Circuits

Course Objectives:

- To introduce the use of power electronic converters in photovoltaic applications;
- To develop various power converter circuits for wind and fuel cell based systems;
- To design, analyze standalone and grid connected renewable energy systems using power electronic converters.

Syllabus

General aspects of renewable energy technology; Fundamental concepts and overview of Power Electronic converters; Grid connected and standalone renewable energy systems; Wind energy systems; Photovoltaic systems; Small/micro hydro systems; Fuel cells; Energy Storage systems for advanced power application; Hybrid Generation systems

Course Outcome:

Students will have a broad knowledge in designing of power electronic based renewable energy systems.

Text Books:

- 1. D P Kothari and Nagrath, "Modern Power System Analysis", Mcgraw Hill, , Chapter 1, 2011.
- 2. Thomas Ackerman, "Wind power in power systems", John Wiley& Sons, Chapter 4, London, 2005.

References:

- 1. M G Simoes and F A Farret, "Alternate energy systems," CRC Press, ,Chapter 7, London, 2008.
- 2. J P Lyons and V Vlatkovic, "power electronics and alternative energy generation", in proc IEEE power electronics specialist conference, vol.1, no 1, pp.16-21, Aachen 2004.
- 3. P F Rebeiro, B K Jhonson, M L Crow, A Arsoy and Y Liu, "Energy Storage systems for advanced power application", in proc IEEE conf. vol.89, no 12, Dec. 2001.

COURSE NO:	Course Title	CRE	DITS
04 EE 7303	POWER ELECTRONIC APPLICATIONS IN RENEWABLE ENERGY	3-1-0:4	
	MODULES	Contact hours	Sem. Exam Marks; %
MODULE : 1		7	15
small/micro hy General Power	General aspects of renewable energy technology- wind, solar, small/micro hydro, fuel cell, geothermal, OTEC, wave, nuclear fusion; General Power electronics- DC to DC converters, AC-DC conversion; DC to AC conversion, AC to AC conversion matrix converters		
MODULE : 2		7	15
Wind Energy: Grid connected-Fixed speed and variable speed wind turbines, Type A, type B, type C, type D-induction generators-SCIG, Wound Rotor Induction Generator, Doubly Fed Induction Generator, Wound Rotor Synchronous Generator and Permanent Magnet Synchronous Generator.			
	FIRST INTERNAL TEST		
MODULE : 3		6	15
	ind energy conversion systems-voltage and frequency uction generator-PMSG;		
Soft starter-fre	quency converters-wind farms.		
MODULE : 4		8	15
systems; Sm	Residential PV systems- battery-inverter - Grid connected all/micro hydro: grid and standalone systems, typical ications; Fuel cells: Low power and high power fuel cell, nic applications		
	SECOND INTERNAL TEST		
MODULE : 5 Energy Stora superconductir	age systems for advanced power application: ng magnetic energy storage (SMES); Battery energy	7	20

storage systems (BESS), Ultra capacitors, Flywheel energy storage (FES) and their applications.		
MODULE : 6	7	20
Hybrid Generation systems: hybrid systems-micro grid-control; Future of power electronics technology: device-packaging-circuit and control.		
END SEMESTER EXAM	1	1

COURSE NO.	COURSE TITLE	L-T-P-C	YEAR
04 EE 7115	DATA ACQUISITION AND SIGNAL CONDITIONING	3-0-0:3	2015

Course Objectives:

• To understand the concepts of data acquisition and signal conditioning for real-time applications

Syllabus

Classification of Signals & Signal Encoding Techniques - Fundamentals of data acquisition, Transducers and sensors-Field wiring and communications cabling,-Signal conditioning, Data acquisition hardware, Analog-to-Digital Converters(ADC)-Multiplexers and demultiplexers - Digital multiplexer . A/D Conversion, Conversion Processes, Speed, Quantization Errors. Successive Approximation ADC . Dual Slope ADC. Flash ADC, Introduction to Sensor-Based Measurement Systems: Features & characteristics, Micro sensor Technology, Signal Conditioning - Introduction- Types of signal conditioning, Classes of signal conditioning

Field wiring and signal measurement- Noise and interference, Minimizing noise, Digital-to-Analog Conversion (DAC), Techniques, Speed, Conversion Errors, Post Filtering- Weighted Resistor, R-2R, Weighted Current type of DACs, Field wiring and communications cabling,-Signal conditioning, Data acquisition hardware, Shielded and twisted-pair cable - Resistive Sensors & Signal Conditioning for Resistive Sensors, Reactance Variation and Electromagnetic Sensors Signal Conditioning for Reactance Variation, Sensors - Self-Generating Sensors, Communication Systems for Sensors: Current telemetry: 4 to 20 mA loop, Simultaneous analogue and digital communication, Serial data communications, Error detection, DAS Boards-Introduction . Study of a representative DAS Board-Interfacing Issues with DAS Boards, Virtual Instrumentation: Introduction to LABVIEW, Creating Virtual Instruments, Making decisions in a Virtual Instrument, Plotting data in VI, Data Acquisition Using NI DAQ & LAB View

Course Outcome:

• The student will be able to implement data acquisition system

Text Books:

1. Ramon Pallas-Areny, John G. Webster, Sensors & Signal Conditionin, John Wiley & Sons, Inc, 2001.

2. John Park & Steve Mackay , Practical Data Acquisition for Instrumentation & Control Systems, Elsevier, 2003

References:

1. LABVIEW_Data Acquisition Manual, National Instruments, 2000

2. LABVIEW Graphical Programming Course, National Instruments, 2007

3. S. Sumathi and P. Surekha , LABVIEW based Advanced Instrumentation Systems, SPRINGER, 2007.

4. Gary Johnson, LabVIEW Graphical Programming(2e), McGraw Hill, New York, 1997.

COURSE	PLAN
--------	------

COURSE NO.:	COURSE TITLE	CF	REDITS
04 EE 7115	DATA ACQUISITION AND SIGNAL CONDITIONING	3-	8-0-0: 3
	MODULES	Contact Hours	Sem. Exam Marks (%)
data acquisition Transducers and conditioning, Da	d sensors-Field wiring and communications cabling,-Signal ata acquisition hardware nd communications cabling,-Signal conditioning, Data	7	15
Digital multiples Conversion Pr Approximation Digital-to-Analo	al Converters(ADC)-Multiplexers and demultiplexers - ker . A/D Conversion ocesses , Speed, Quantization Errors . Successive ADC. Dual Slope ADC. Flash ADC g Conversion (DAC) . Techniques, Speed, Conversion ering- Weighted Resistor, R-2R, Weighted Current type of	8	15
	FIRST INTERNAL TEST		
characteristics, Signal conditior signal condition	o Sensor-Based Measurement Systems: Features & Micro sensor Technology ning: Introduction- Types of signal conditioning, Classes of ing I signal measurement- Noise and interference, Minimizing	8	15
for Resistive Ser Reactance Varia Reactance Varia Sensors - Self-	ation and Electromagnetic Sensors Signal Conditioning for	7	15

MODULE: 5		
Simultaneous analog and digital communication, Serial data		
communications, Error detection	6	20
DAS Boards-Introduction . Study of a representative DAS Board-		
Interfacing Issues with DAS Boards		
MODULE: 6		
Virtual Instrumentation: Introduction to LABVIEW		
Creating Virtual Instruments, Making decisions in a Virtual Instrument,	7	20
Plotting data in VI		
Data Acquisition Using NI DAQ & LAB View		
END SEMESTER EXAMINATION		

COURSE CODE	COURSE NAME	Credits	YEAR
04 EE 7419	FACTS AND CUSTOM POWER DEVICES	3-0-0:3	2015

Course Objectives:

To give the Student:-

- An introduction to the various types of FACTS controllers;
- Explanation of the principle of shunt compensation and series compensation;
- Description on the various power devices and converter topologies used in FACTS controllers;
- The concept of combined series and shunt FACTS controllers.

Syllabus

Power transmission problems and emergence of FACTS solutions; FACTS controllers; FACTS control considerations; Shunt compensation; Principles of shunt SVC; static synchronous compensator (STATCOM) configuration and control; Series compensation; Variable Impedance Type series compensators; Static Synchronous Series Compensator (SSSC); Unified Power Flow Controller (UPFC): Principles of operation and characteristics; Interline Power Flow Controller (IPFC) – Basic operating Principles

Course Outcome:

Students who successfully complete this course will have demonstrated an ability to understand the emergence of FACTS Technology and compare various types of FACTS controllers; Understand the configuration and the control of shunt and series compensation devices; Identify appropriate power devices and converter topologies for implementation of FACTS controllers; Explain the active and reactive power flow control capability of combined series and shunt controllers.

Text Books:

(1) Song, Y.H and Allan T. Johns, "Flexible Ac Transmission Systems (FACTS)"; Institution Of Electrical Engineers Press, London, 1999

(2) Hingorani, L Gyugyi "Concepts and Technology Of Flexible Ac Transmission System", IEEE Press New York, 2000 ISBN- 078033 4588.

References:

(1) Miller, T J E "Reactive Power Control in Power Systems" John Wiley, 1982

(2) Padiyar K.R. "Facts Controllers In Power Transmission and Distribution", New Age International Publishers, June 2007.

COURSE NO:	COURSE TITLE:	CRE	DITS:
04 EE 7419	FACTS AND CUSTOM POWER DEVICES	3-0	-0: 3
	MODULES	Contact hours	Sem. Exam Marks;%
MODULE : 1		10	15
Power transmi	ssion problems and emergence of FACTS solutions		
	of ac power transmission, transmission problems and gence of FACTS- FACTS controllers-FACTS control		
MODULE : 2		6	15
Shunt compens	sation		
Principles of sh	unt SVC-TCR, TSC, combined TCR and TSC configurations.		
	FIRST INTERNAL TEST		
MODULE : 3		5	15
-	nous compensator (STATCOM) configuration and control, SVC and STATCOM.		
MODULE : 4		6	15
Series compen	sation		
	lance Type series compensators: Thyristor Switched Series C), Thyristor Controlled Series Capacitor (TCSC)		
	SECOND INTERNAL TEST		
MODULE : 5		5	20
-	ous characteristics- Basic NGH SSR Damper. Static Series Compensator (SSSC): Principle of operation, nd control.		
MODULE : 6		10	20
Unified power	flow controller (UPFC)		
		ı	

Principles of operation and characteristics, independent active and	
reactive power flow control, comparison of UPFC to the controlled series	
compensators, control and dynamic performance.	
Interline Power Flow Controller (IPFC) – Basic operating Principles and Characteristics.	
END SEMESTER EXAM	

COURSE CODE	COURSE NAME	Credits	YEAR
04 EE 7511	ENERGY AUDIT, MANAGEMENT AND CONSERVATION	3-0-0:3	2015

Course Objectives:

- 1. To equip the students with advancements in energy management.
- 2. To equip the students with the idea of energy auditing techniques.
- 3. To familiarise the students with various energy efficient motors and energy instruments.
- 4. To empower the students with economic aspects and analysis.

Syllabus

Energy Scenario- Energy management : Definition, significance and objectives of energy management -**Basic principles of energy audit:** definitions, concept , types of audit, energy index, cost index ,pie charts, Sankey diagrams, load profiles, Energy conservation schemes- **Energy efficient motors :** Energy efficient motors , factors affecting efficiency, loss distribution , constructional details - Power Factor Improvement, Lighting And Energy Instruments- Economic Aspects And Analysis

Course Outcome:

The students will be able to apply the advanced energy auditing techniques to various energy management problems

Text Books:

- 1. W.R.Murphy And G.Mckay Butterworth, "Energy management", Heinemann publications.
- 2. John .C. Andreas, "Energy efficient electric motors,", Marcel Dekker Inc Ltd-2nd edition, 1995

REFERENCES:

- 1. V.A.Venikov , E.V.Putiatin, "Introduction to energy technologies," Mir, Moskow -2006 .
- 2. S.C.Tripathy, "Electrical Energy utilization and energy conversion," Tata Mc-GrawHill 2003
- 3. S.B.Pandya," Conventional energy technology," Tata Mc-GrawHill -2003.

Skortzki and Vopat, "Power station engineering and economy," Tata Mc-GrawHill -2003

COURSE NO.	COURSE TITLE	L-T-	P: 3-0-0
04 EE 7511	Energy Audit, Management and Conservation	CRE	DITS: 3
	MODULES	Contact Hours	Sem. Exam Marks (%)
commercial er	io: Primary energy resources, Commercial and Non- nergy, commercial energy production, final energy Energy needs of growing economy, long term energy y pricing, energy sector reforms, energy and environment.	7	15
MODULE: 2 Energy manage management, management monitoring, rep Questionnaire management, and maximum of location of cap and energy sub	8	15	
	FIRST INTERNAL TEST	1	1
energy index, Energy conserv potential, ener building energy	s of energy audit: definitions, concept , types of audit, cost index ,pie charts, Sankey diagrams, load profiles, ation schemes - Energy audit of industries- energy saving rgy audit of process industry, thermal power station, audit	7	15
efficiency, loss variable speed	t motors : Energy efficient motors , factors affecting distribution , constructional details characteristics - , variable duty cycle systems, RMS hp- voltage variation- nce- over motoring- motor energy audit SECOND INTERNAL TEST	6	15
MODULE: 5 Power Factor Ir	nprovement, Lighting And Energy Instruments	8	20

 UNIV	HNCE RSI	iy Iy
ĸ		1
	5	7
	Ψ.	/

Power factor – methods of improvement, location of capacitors, Pf with		
non linear loads, effect of harmonics on power factor, power factor		
motor controllers . Good lighting system design and practice, lighting		
control, lighting energy audit- Good lighting system design and		
practice, lighting control ,lighting energy audit		
MODULE: 6		
Economic Aspects And Analysis		
Economics Analysis-Depreciation Methods, time value of money, rate of		
return , present worth method , replacement analysis, life cycle costing		
analysis Energy efficient motors- calculation of simple payback	6	20
method, net present worth method- Energy efficient motors-		
calculation of simple payback method, net present worth method-		
Power factor correction, lighting - Applications of life cycle costing		
analysis, return on investment .		
END SEMESTER EXAM		1

COURSE CODE	COURSE TITLE	L-T-P-C	YEAR	
04 EE 7603	ADVANCED CONTROLLERS FOR EMBEDDED SYSTEMS	3-0-0-3	2015	

Course Objectives:

To give the Student:-

- A introduction in the advanced dsPIC30F4011 motor control and power conversion controller for developing embedded system;
- An outline to the advanced TMS320F2407 DSP controller.
- An overview of FPGA based system design
- A introduction to ARM processors for developing embedded systems

Syllabus

dsPIC30F4011, Architecture, Programming, Motor Control and Power Conversion; Introduction to DSP Controller; outline to the advanced TMS320F2407 DSP controller; FPGA Based System Design using VHDL; Xilinx 4000 Series FPGAs and Altera Flex 10K series CPLDs; Overview of High Performance RISC Architecture, ARM organization.

Course Outcome:

The students who successfully complete this course will have ability to develop embedded systems using advanced microcontrollers such as dsPIC30F4011, TMS320F2407 ARM processors and FPGAs.

References:

- 1. Lucio Di Jasio, T Wilmshurst, Dogan Ibrahim, John Morton, Martin P. Bates, Jack Smith, D W Smith, C Hellebuyck, PIC Microcontrollers: Know It All: Know It All, Newnes 2008
- 2. dsPIC30F4011 Data Sheet 70135C, Microchip Technology Inc., 2005
- 3. Sen M. Kuo, Woon-Seng S. Gan, Digital Signal Processors: Architectures, Implementations, And Applications, Pearson Education, 2004
- 4. Phil Lapsley, Jeff Bier, Amit Shoham, Edward A. Lee, DSP Processor fundamentals: Architectures and Features, IEEE Press -1997, Wiley India Pvt Ltd
- 5. Avtar Singh and S. Srinivasan, Digital Signal Processing, Thomson/Brooks/Cole, 2004
- 6. TMS320LF2407 Data Sheet, Texas Instrument, September 2003
- 7. C. Maxfield, "The Design Warrior's Guide to FPGAs: Devices, Tools and flows", Newnes, 2004
- 8. W. Wolf, "FPGA Based System Design", Prentice-Hall, 2004.
- 9. Brown, S. D. and Vranesic, Z. G., "Fundamentals of Digital Logic with VHDL Design", Second or Third Edition, McGraw-Hill
- 10. Roth C. H., Digital System Design Using VHDL, Cengage Learning, 2008.
- 11. Steave Furber, "ARM system on chip architecture", Addison Wesley, 2000
- 12. Andrew N Sloss, Dominic Symes, Chris Wright, ARM System Developer's Guide , Elseveir

Course No:	Course Title:	CRE	DITS
04 EE 7603	Advanced Controllers for Embedded Systems	3-0	-0 :3
	MODULES	Contact hours	Sem. Exam Marks;%
MODULE : 1 -	dsPIC30F4011	7	15
	1 – Architecture - MCU and DSP features - Hardware DMA - troller - Digital I/O, On-chip Flash, Data EE and RAM		
MODULE: 2 -	dsPIC30F4011 - Motor Control and Power Conversion	6	15
	Timers, Communication Modules ol Peripherals - Capture/Compare/PWM, Analog-to-Digital		
	FIRST INTERNAL TEST		
	C	45	
	DSP Controller Introduction to DSP architecture- computational building blocks - Address nit, Program control and sequencing- Parallelism, Pipelining	6	15
MODULE : 4	TMS 320LF2407	7	15
	of TMS320LF2407 - Addressing modes- I/O functionality, DC, PWM, Event managers, Elementary Assembly Language		
	SECOND INTERNAL TEST		
MODULE : 5 -	FPGA Based System Design using VHDL	10	20
Behavioral, D Design at diff of sequential	Hardware Description Languages – VHDL Introduction, hata flow, Structural Models - Simulation Cycles - Test bench; ferent levels with special emphasis on FPGA and PLD, Design and Combinatorial circuits, Xilinx 4000 Series FPGAs and DK series CPLDs		
	High Performance RISC Architecture	6	20
Overview of	ARM architecture – RISC concepts - ARM organization and		

implementation, ARM instruction set - The thumb instruction set - Basic ARM Assembly language program - ARM CPU cores.

END SEMESTER EXAMINATION

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EE 6391/7391	SEMINAR	0-0-2: 2	2015

Course Objectives:

- 1. Improve the technical presentation skills of the students.
- 2. To train the students to do literature review.
- 3. To impart critical thinking abilities.

Methodology

Individual students are required to choose a topic of their interest from related topics to the stream of specialization, preferably from outside the M. Tech syllabus. The students are required to do a moderate literature review on the topic and give seminar. A committee consisting of at least three faculty members (preferably specialized in the respective stream) shall assess the presentation of the seminar and award marks to the students based on merits of topic of presentation. Each student shall submit two copies of a write up of his seminar topic. The seminar report shall not have any plagiarised content (all sources shall be properly cited or acknowledged). One copy shall be returned to the student after duly certifying it by the chairman of the assessing committee and the other shall be kept in the departmental library. Internal continuous assessment marks are awarded based on the relevance of the topic, presentation skill, quality of the report and participation. It is encouraged to do simulations related to the chosen topic and present the results at the end of the semester.

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EE 7393	PROJECT PHASE - I	0-0-12: 6	2015

Course Objectives:

The project work aims to develop the work practice in students to apply theoretical and practical tools/techniques to solve real-life problems related to industry and current research.

The project work can be a design project/experimental project and/or computer simulation project on any of the topics related to the stream of specialisation. The project work is chosen/allotted individually on different topics. Work of each student shall be supervised by one or more faculty members of the department. The students shall be encouraged to do their project work in the parent institute itself. If found essential, they may be permitted to carry out their main project outside the parent institute, subject to the conditions specified in the M. Tech regulations of the APJ Abdul Kalam

Technological University. Students are encouraged to take up industry problems in consultation with the respective supervisors.

The student is required to undertake the main project phase-1 during the third semester and the same is continued in the 4th semester (Phase 2). Phase-1 consist of preliminary work, two reviews of the work and the submission of a preliminary report. First review would highlight the topic, objectives, methodology and expected results. Second review evaluates the progress of the work, preliminary report and scope of the work which is to be completed in the 4th semester.

COURSE CODE	COURSE NAME	L-T-P: C	YEAR
04 EE 7394	PROJECT PHASE - II	0-0-21: 12	2015

Main project phase II is a continuation of project phase-I started in the third semester. There would be two reviews in the fourth semester, first in the middle of the semester and the second at the end of the semester. First review is to evaluate the progress of the work, presentation and discussion. Second review would be a pre -submission presentation before the evaluation committee to assess the quality and quantum of the work done. It is encouraged to prepare at least one technical paper for possible publication in journals or conferences. The project report (and the technical paper(s)) shall be prepared without any plagiarised content and with adequate citations, in the standard format specified by the Department /University.