Cou	irse No.	Course Name	L-T-P -Credits	Year Introdu	of ction
E	E201	CIRCUITS AND NETWORKS	3-1-0-4	2016	
Prerequ	isite: Nil				
Course	Objectives:	LADIN		NA	
To learn	about various	techniques available to s	solve various types of circu	uits and net	tworks
To gain t	the capability	to synthesize a circuit fo	r a particular purpose.	A T	
Syllahus	AC Circuit 4	analysis(Steady State A(C Analysis) Network topo	logy Trans	sient
analysis		marysis(steady state m	e marysis), rection topo	iogy, main	
Laplace	transform pr	parties Transformed ci	reuite Two port networks	Symmetri	cal two
Laplace	tive networks	og filtera Network funct	iong Network Synthesis	, Symmetri	cal two
Evneet	ad autaama	as milers, network funct	ions, Network Synthesis		
Ability	to goly o on T	C and AC aircuita			
Ability	to solve any L	C and AC circuits			
Ability	to apply graph	Theory in solving netwo	JIKS		
ADIIITY	to apply Lapla	ice Transform to find tra	insient response		
Ability	to synthesize	networks			
T (D					
Text B	ook:				
1. H	layt and Kemmer	ly :Engineering Circuit A	nalysis, 8e, Mc Graw Hill	Education	ı, New
L D	Delhi, 2013.				
2 9	a dhalran an d C	hum Mahan Cinquita	a d Nature des Austrais en	1 Countly and	~ 5 . M ~
2. 5		onyam Monan- Circuits a	and Networks: Analysis an	a Synthesi	s, se, Mc
	fraw Hill Educ	cation,			
Data Bo	ok (Approve	d for use in the examin	ation): Nil		
Referen	ces:				
1. Siskand	C.S : Electrical	Circuits .McGraw Hill			
2. Joseph.	A. Edminister: T	heory and problems of Electr	ic circuits, TMH		
3. D Roy (Chaudhuri: Netwo	orks and Systems, New Age I	Publishers		
4. A . Cha	krabarti : Circuit	Theory (Analysis and Synthe	sis),Dhanpat <mark>Rai &Co</mark>		
5. Valkent	erg : Network A	nalysis, Prentice Hall of India			
6. B.R. Gu	ipta: Network Sy	stems and Analysis, S.Chand	& Company Itd		
Madada		Course	e Plan	Hanna	End
Module		Contents		Hours	End Sem
		20	14 //		Exam
		20	14		Marks
Ι	Network the	orems - Superposition th	neorem – Thevenin's	9 hours	15%
	theorem – No	orton's theorem – Recip	ro <mark>city Theore</mark> m –		
	Maximum po	ower transfer theorem -	dc and ac steady state		
	analysis – de	pendent and independen	t sources		
II	Network top	ology – graph tree incid	lence matrix – properties	9 hours	15%
	of incidence	matrix – fundamental cu	it sets – cut set matrix –	5 115013	10/0
	tie sets $-$ fun	damental tie sets $-$ tie se	t matrix _ relationshing		
	among incid	ence matrix out set matri	$\frac{1}{10}$ in $\frac{1}{10}$ is a tie set matrix		
	Kirchoff'a la	we in terms of network	in a lie set matrices		
	formation s la	ws in terms of network l	opological matrices –		
	formulation a	and solution of network	equations using		
	topological n	nethods			

	FIRST INTERNAL EXAMINATION				
III	Steady state and transient response – DC response &	9 hours	15%		
	sinusoidal response of RL, RC and RLC series circuits				
IV	Application of Laplace transform in transient analysis – RL,	10	15%		
	RC and RLC circuits (Series and Parallel circuits) – step and	hours			
	sinusoidal response				
	Transformed circuits – coupled circuits - dot convention -				
	transform impedance/admittance of RLC circuits with mutual	N.A.			
	coupling – mesh analysis and node analysis of transformed				
	circuits - solution of transformed circuits including mutually	A T			
	coupled circuits in s-domain				
	SECOND INTERNAL EXAMINATION				
V	Two port networks – Z, Y, h, T parameters – relationship	9 hours	20%		
	between parameter sets – condition for symmetry &				
	reciprocity – interconnections of two port networks – driving				
	point and transfer immittance – $T-\pi$ transformation.				
VI	Network functions–Network synthesis-positive real functions	8 hours	20%		
	and Hurwitz polynomial-synthesis of one port network with				
	two kinds of elements-Foster form I&II-Cauer form I&II.				
	END SEMESTER EXAM				

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI

014

Student has to answer any 2 questions: $(2 \times 10) = 20$

Course No	Course Name	L-T-P-Credits	Year of	Introduction			
EE202	Synchronous and Induction Machines	3-1-0-4		2016			
Prerequisite	NIL		1				
Course Ob	jectives						
То	give exposure to the students about the con-	ncepts of altern	nating curr	ent machines			
including	g the Constructional details, principle of opera	tion and perform	nance analy	/sis.			
Tol	earn the characteristics of induction machines	and to learn ho	w it can be	employed for			
various a	pplications.		K.A.				
Syllabus	APLADULI	SALA	IVI				
Alte	rnators – basic principle, constructional detail	s, armature win	dings, arma	ture reaction,			
voltage 1	egulation and determination of regulation by	different metho	ods; paralle	l operation of			
alternato	rs and synchronization; Synchronous motor	s – principle, j	performanc	e and power			
relations	; synchronous induction motors. 🦷 📃	IIY					
Indu	ction motors – basic principle, rotating	magnetic field,	construct	ional details,			
mechani	cal power and torque, performance analys	is, starting me	thods, bra	king, testing,			
equivale	nt circuit and circle diagrams; single phase ind	luction motors.					
Indu	ction generator – principle of operation.						
Expected (Dutcome						
Afte	r the successful completion of this course, the	students will be	e able to				
1.	dentify alternator types, and appreciate their p	erformance					
2.	determine the voltage regulation and analyse t	he performance	of alternate	ors			
3.	lescribe the principle of operation of synchror	nous motor and	different ap	plications.			
4.	describe the principle of operation of 3-phase i	induction motor	rs and selec	t appropriate			
	notor types for different applications.						
5.	analyse the performance of 3-phase induction	motors					
6.	amiliarize with principle of operation and app	plication of 1 -p	hase induc	tion motors.			
Toyt Dool			-				
1 Dim	he D.S. Electrical Machinery 7/2 Khones I	$\mathbf{h}_{\mathbf{h}}$					
$\begin{array}{ccc} 1. & \text{BIII} \\ 2 & \text{Nac} \end{array}$	ora P. S., <i>Electrical Machinery</i> , <i>i.e.</i> , Khanna F	ublishers, 2011	· aw Hill 20	06			
2. Reference	Rooks	nes, rata meor	aw 1111, 20				
1 Sav	M G The Performance and Design of A C	Machines C.B.	S Publisher	rs New			
Del	ni, 2002.			5,11011			
2. Fitz	gerald A. E., C. Kingsley and S. Umans, Elect	ric Machinery,	6/e, McGra	w Hill, 2003.			
3. Lan	gsdorf M. N., Theory of Alternating Current M	<i>lachinery</i> , Tata	McGraw H	Iill, 2001.			
4. Des	npande M. V., Electrical Machines, Prentice H	Hall India, New	Delhi, 201	1.			
5. Cha	rles I. Hubert, Electric Machines, Pearson, Ne	w Delhi 2007					
6. The	odore Wilde, <i>Electrical Machines</i> , <i>Drives and</i>	Power System,	Pearson Ec	l. Asia 2001.			
	Course Plan						
Module	Contents		Hours	Semester Exam Marks			
	Alternators - basic principle, constructional	features of					
	salient pole type and cylindrical type	alternators.					
I advantages of stationary armature. turbo-alternator. 8 hours		15%					
	Armature winding _ types of armature win	ding_ single		- '			
	aver double layer full nitched and short nited	hed winding					
	ayer, double layer, full pliched and short plich	ieu winding,					

	slot angle, pitch factor and distribution factor – numerical problems.		
	Effect of pitch factor on harmonics – advantages of short chorded winding, EMF Equation – numerical problems.		
	Harmonics in generated EMF – suppression of harmonics.		
Π	Performance of an alternator – Causes for voltage drop in alternators – armature resistance, armature leakage reactance – armature reaction, synchronous reactance, synchronous impedance, experimental determination – phasor diagram of a loaded alternator. Voltage regulation – EMF, MMF, ZPF and ASA methods –	9 hours	15%
	EIDST INTEDNAL EVAMINATION		
	FIRST INTERNAL EXAMINATION		
III	Theory of salient pole machine – Blondel's two reaction theory – direct axis and quadrature axis synchronous reactances – phasor diagram and determination of X_d and X_q by slip test. Parallel operation of alternators – necessity of parallel operation of alternators, methods of synchronisation– dark lamp method and bright lamp method, synchroscope, Synchronising current, synchronising power, synchronising torque. Effects of changing excitation of alternators, load sharing of two alternators in parallel operation.	9 hours	15%
IV	Synchronous motor – construction and principle of synchronous motor, methods of starting. Effects of excitation on armature current and power factor, v-curve and inverter v-curve, load angle, torque and power relationship, phasor diagram, losses and efficiency calculations. Three phase induction motor – constructional features, slip ring and cage types. Theory of induction motor with constant mutual flux, slip, phasor diagram, expression for mechanical power and torque, torque-slip characteristics, starting torque, full load and pull out torque, equivalent circuit.	9 hours	15%
	SECOND INTERNAL EXAMINATION	1	1
V	Circle diagrams – tests on induction motors for determination of equivalent circuit and circle diagram.	10 hours	20%

	Cogging, crawling and noise production in cage motors – remedial measures.				
	Double cage induction motor – principle, torque-slip curves.				
	Starting of induction motors – types of starters – DOL starter, autotransformer starter, star-delta starter, rotor				
	resistance starter – starting torque and starting current- numerical problems. Braking of induction motors – plugging, dynamic braking and regenerative braking (no numerical problems).				
	Speed control – stator voltage control, V/f control, rotor resistance control.				
VI	Induction generator – principle of operation, grid connected and self excited operation, comparison of induction generator with synchronous generators.grid comparison of operation.Synchronous induction motor – principle of operation.10 hours20%Single-phase induction motor – double field revolving theory, equivalent circuit, torque slip curve.10 hours20%Types of single phase induction motor – split phase, capacitor start, capacitor start and run types.Principle of shaded pole motor – applications.10 hours				
	END SEMESTER EXAM				

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Estd.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI

Student has to answer any 2 questions: $(2 \times 10) = 20$

Course No.	Course Name	L-T-P -Credits	Year of Introduction
EE203	ANALOG ELECTRONICS CIRCUITS	3-1-0-4	2016
Prerequisite :	Nil		
Course Objec	tives		
 To implication 	part an in depth knowledge in electror	ic semiconductor devi	ices & circuits giving
import	ance to the various aspects of design &	analysis.	A
• To pro	ovide knowledge about different type	s amplifier & oscilla	tor circuits and their
design	TECHNIOLO	ALICA	
• To pro	ovide a thorough understanding of th	e operational amplif	ier circuits and their
functio	ns. IINIIVED	CITV	
Prerequisites	: N1l		DIT hissing AC
Syllabus Dio	ae clipping and clamping circuits and Z	ener voltage regulators	, BJI blasing, AC
response of B	T and EET amplifiers. Power amplifier	Blasing OI JFET and M	amplifiers
& Oscillator C	irenits	s using DJ1, recuback	amplificis
Operational A	mulifier basics and OP-AMP Circui	ts Wave form genera	ation using On-Amp
Multivibrators	using Timer IC 555.	is, where form genere	and using op mip,
Expected ou	tcome : Upon successful completion of	the course the students	will be able to
1. Design b	biasing scheme for transistor circuits		
2. Model B	JT and FET amplifier circuits		
3. Choose a	power amplifier with appropriate speci	fications for electronic	circuit applications
4. Design &	analyse oscillator circuits using BJT		
5. Choose C	Operational amplifier(OPAMP) for spec	ific applications includ	ing waveform
generatio	n.		
6. Design &	implement analog circuits using OPAN	APs	
T 4 D 1			
1 Molvir	A and D. I. Patas Electronic Princip	log 7/2 Toto McGrow	Hill 2010
$\frac{1}{2}$ Boyles	tad R L and L Nashelsky Electronic	Devices and Circuit Th	$\frac{1111}{2010}$
Z. Doyles Educat	ion India 2009	Sevices and circuit In	cory, 10/c, 1 carson
3. Choud	hury R., Linear Integrated Circuits, New	v Age International Pul	olishers, 2008.
01 011000			
Data Book (Approved for use in the examination): Nil	
References:	2014		
1 Floyd '	T. L. Fundamentals of Analog Circuits	Pearson Education 2	012
2. Robert	T. Paynter and John Clemons, Paynter'	s Introductory electron	ic devices & circuits.
Prentic	the Hall Career & Technology, New Jerse	ev.	
3. Bell D	. A., Electronic Devices and Circuits, Pr	entice Hall of India, 20	007.
4. Millma	an J. and C. C. Halkias, Integrated Elect	ronics: Analog and Dig	gital Circuits and
System	ns, Tata McGraw-Hill, 2010.		
5. Streetn	nan B. G. and S. Banerjee, Solid State E	electronic Devices, Pea	rson Education Asia,
2006.			
6. Gayak	ward R. A., Op-Amps and Linear Integr	ated Circuits, PHI Lea	rning Pvt. Ltd., 2012.

	Course Plan		
Module	Contents	Hours	Sem.ExamMarks
	Diode Circuits : Diode clipping circuits - Single level and two level clippers - Clamping circuits – Design of Zener Voltage Regulators.		
Ι	 Bipolar Junction Transistors : Review of BJT characteristics- Operating point of a BJT – Factors affecting stability of Q point and DC Biasing – Biasing circuits: fixed bias, collector to base bias, voltage division bias and self bias. (Derivation of stability factors for Voltage Divider Biasing only) –Bias compensation using diode and thermistor. Low frequency equivalent circuit of BJT. Common Emitter amplifier - AC Equivalent Circuit – Role of coupling and emitter bypass capacitors – h parameter model of BJT -Amplifier gains and impedances calculations using h equivalent circuit. 	9 hours	15%
Π	Field Effect Transistors : Review of JFET and MOSFET construction, working and characteristics- Biasing a JFET and MOSFET using voltage divider bias— CS and CD amplifiers – small signal models-FET as switch and voltage controlled resistance. Frequency response of Amplifiers : Miller's Theorem- BJT Internal Capacitances at high frequency operations- High frequency analysis of CE Amplifier using hybrid Pi Model -Low Frequency Response of Common Emitter amplifier — CE High frequency response-Gain bandwidth product- —Low and High Frequency response of FET amplifiers	9 hours	15%
	FIRST INTERNAL EXAMINATION		1370
	Multistage amplifiers : Direct, RC, transformer coupled amplifiers – 2014	8 hours	15%
III	Power amplifiers using BJT : Class A, Class B and Class AB and class C- Conversion efficiency and distortion in power amplifiers. Feedback Amplifiers- Effect of positive and negative feedbacks- Basic feedback topologies and their properties		
IV	Oscillators : Bark Hausen's criterion – RC oscillators (RC Phase shift oscillator and Wein Bridge oscillator) –LC oscillators (Hartley and Colpitt's)- Derivation of frequency of oscillation for the above mentioned oscillators- Crystal oscillator.	8 hours	15%

	Operational Amplifiers : Review of Operational Amplifier basics - Analysis of fundamental differential amplifier- Properties of ideal and practical Op-Amp - Gain, CMRR and Slew rate of IC 741 and LM 301– Drift and frequency compensation in OP Amps- Open loop and Closed loop Configurations-Concept of virtual short and its relation to negative feedback		
	SECOND INTERNAL EXAMINATION	NA /	1
V	 OP-AMP Circuits : Review of inverting and non- inverting amplifier circuits- Summing and difference amplifiers, Differentiator and Integrator circuits- Logarithmic amplifier- Half Wave Precision rectifier - Instrumentation amplifier. Comparators: Zero crossing and voltage level detectors, Schmitt trigger. 	AL 8hours	20%
VI	 Wave form generation using Op-Amps: Square, triangular and ramp generator circuits using Op-Amp - Effect of slew rate on waveform generation. Timer 555 IC : Internal diagram of 555 IC– Astable and Monostable multivibrators using 555 IC. Oscillator circuits using Op-amps : RC Phase shift oscillator, Wein Bridge oscillator, LC Oscillators-(Derivation not required) Crystal oscillator. 	8 hours	20%

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II

2014

Estd.

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI

Student has to answer any 2 questions: $(2 \times 10) = 20$

Course No.	Course Name	L-T-P -Credits	Year of				
			Introduction				
EE204 Digital Electronics and Logic Design		2-1-0-3	2016				
Prerequisite :	Nil						
Course Objec	tives						
To impart kno	wledge about digital logic and to gain the ab	ility to design vario	us digital circuits				
Syllabus	TECHNOLOG	TCA					
Review of N	umber Systems and Codes, Digital Logic	, Combinational L	ogic Circuits, Data				
Processing Ci	rcuits, Arithmetic Circuits, Flip-Flops, Re	egisters, Counters,	DACs and ADCs,				
Design of sync	chronous Sequential Circuits, Introduction to	HDL.					
Expected ou	tcome.						
After the suc	cessful completion of the course, the student	will be able to:					
1. Familiar	with various number systems and Boolean al	gebra					
2. design an 3. Familiar	d analyse any digital logic gate circuits and l	Flip flop based syste	ems.				
4. gain the c	apability of implementing various counters,						
5. describe t	he operation of ADC and DAC circuits						
Text Book:							
1. Floyd T.L,	Digital Fundamentals , 10/e, Pearson Educa	tion, 2011					
2. C.H.Roth a	and L.L.Kimney Fundamentals of Logic Des	ign, 7/e, Cengage L	earning, 2013				
References:	Estd.						
1. Donald P	Leach, Albert Paul Malvino and GoutamSah	na., Digital Principle	es and Applications,				
8/e, by M	c Graw Hill						
2. Mano M.	M, Logic and Computer Design Fundamenta	als, 4/e, , Pearson E	ducation.				
3. Tocci R.J	and N.S.Widmer, Digital Systems, Principle	s and Applications,	, 11/e, , Pearson				
Education	Education.						
4. John F. W	4. John F. Wakerly, Digital Design: Principles and Practices. 4/e. Pearson. 2005						
5. Taub & S	chilling: Digital Integrated Electronics, McC	braw Hill,1997					
	· ·						
Data Book (Approved for use in the examination):Nil						
Data Dook (Approved for use in the examination). Mi							

Course Plan				
Module	Contents	Hours	Sem.ExamMarks	
Ι	Number Systems and Codes : Binary, Octal and hexadecimal conversions- ASCII code, Excess -3 code, Gray code, Error detection and correction - Parity generators and checkers – Fixed point and floating point arithmetic. Binary addition and subtraction, unsigned and signed numbers, 1's complement and 2's complement arithmetic.	7 hours	15%	
П	TTL logic and CMOS logic - Logic gates, Universal gates - Boolean Laws and theorems, Sum of Products method, Product of Sum method – K map representation and simplification(upto four variables) - Pairs, Quads, Octets, Dont care conditions.	7 hours	15%	
	FIRST INTERNAL EXAMINATION			
III	Combinational circuits: Adders _ Full adder and half adder – Subtractors, halfsubtractor and fullsubtractor – Carry Look ahead adders – ALU(block diagram only). Multiplexers, Demultiplexers, Encoders, BCD to decimel decoders.	7 hours	15%	
IV	Sequential circuits: Flip-Flops, SR, JK, D and T flip-flops, JK Master Slave Flip-flop, Conversion of flip-flops, Registers -SISO,SIPO, PISO, PIPO. Counters : Asynchronous Counters - Modulus of a counter - Mod N counters.	8 hours	15%	
	SECOND INTERNAL EXAMINATION			
V	Synchronous counters: Preset and clear modes, Counter Synthesis: Ring counter, Johnson Counter, Mod N counter, Decade counter. State Machines: State transition diagram, Moore and Mealy Machines – Design equation and circuit diagram.	7 hours	20%	
VI	Digital to Analog conversion – R-2R ladder, weighted resistors. Analog to Digital Conversion - Flash ADC, Successive approximation, Integrating ADC.	8 hours	20%	

Memory Basics, Read and Write, Addressing, ROMs,				
PROMs and EPROMs, RAMs, Sequential Programmable				
Logic Devices - PAL, PLA, FPGA (Introduction and basic				
concepts only)				
Introduction to VHDL, Implementation of AND, OR, half adder and full adder.				
API ABDUL KALAM	M			
END SEMESTER EXAM				

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI

Student has to answer any 2 questions: $(2 \times 10) = 20$

Note: Each question can have maximum of 4 sub questions, if needed.

Course	No.	Course Nai	ne	L-T-P -Credits	Y Intr	ear of oduction
EE20	5	DC MACHINE TRANSFORM	S AND IERS	3-1-0-4		2016
Prerequi	site :	Nil				
Course ()bjec	ives				
T	o giv	e exposure to the stud	ents about the	concepts of direct	current n	nachines and
transfo	ormers	, including their const	ructional detail	s, principle of operation	ation and	performance
analys	is.	$\Delta D \Delta R$		KALA	14	
Syllabus	3		JUL	MALA	V1	
Electrom	agneti	c principles for Machin	es, electrodyna	mic equations and the	heir soluti	on, Magnetic
Circuits f	for M	achines, construction of	DC machines,	DC generators, DC	motor, Ti	ansformers -
single ph	ase a	nd three phase, Constru	ction of single	phase and three pha	se transto	rmers, losses
and effici	ency,	equivalent circuit, testin	g. Transformer	connections.		
Expected	f outc	ome.	ef this servers	the extendents will be a	h1. + .	
A 1	idar	tifu de generator turas	of this course,	the students will be a	ble to	
1	dage	intry de generator types,	and appreciate	their performance	risto moto	r types for
۷.	diff	arent applications		noi and select approp		i types tot
3	ana	vse the performance of	different types (of de motors		
3. 4	des	ribe the principle of one	ration of single	nhase transformers		
5	ana	vse the performance of	single phase tra	nsformers		
6.	fam	iliarize with the princip	le of operation a	and performance of the	ree phase	ransformers.
Text Boo	ok			<u> </u>		
1. B	imbra	P. S., Electrical Machin	erv, 7/e, Khann	a Publishers, 2011.		
2. N	agratł	J. and D. P. Kothari, Th	eory of AC Ma	<i>chines</i> , Tata McGraw	7 Hill, 200	6.
Reference	e Boo	ks				
1 . Fi	itzgera	ld A. E., C. Kingsley an	d S. Umans, <i>El</i>	ectric Machinery, 5/e	e, McGraw	⁷ Hill, 1990.
2. La	angsd	orf M. N., Theory of Alte	ernating Curren	nt Machinery, Tata M	cGraw Hil	1, 2001.
3. A D	bhijitl elhi 2	n Chakrabarti, Sudipta D 015	ebnath, Electric	cal Machines, McGra	w Hill Edu	ucation, New
4. D	eshpa	nde M. V., <i>Electrical M</i>	achines. Prentic	e Hall India. New De	elhi, 2011.	
5. T	heodo	re Wilde. <i>Electrical Mac</i>	chines. Drives a	and Power System. Pe	arson Ed.	Asia 2001.
Data Boo	ok (A	pproved for use in the	examination):	Nil		
			Course l	Plan		
Module		C	ontents		Hours	Semester Exam Marks
	Elect	romagnetic principles for	r Machines	11 - 1		
	Elect	ro dynamical equations	s and their sol	ution – rotational		
	moti	on system – mutually co	oupled coils – c	onstruction of DC		
Ι	macł	ines – energy conversio	n in rotating ele	ectrical machines –	9 hours	15%
	eddy	currents and eddy curre	nt losses – flux	distribution curve		
in the airgap – armature windings – lap and wave windings –						
	selec	tion criteria – equalizer i	rings – dummy	coils.		
	DC	generators – EMF equa	ation – method	is of excitation –		
	separ	ately and self excited	– shunt, ser	ies, compound –		
II	arma	ure reaction – effe	magnatizina	ure reaction –	9 hours	15%
	uema	igneuzing & cross		ampere-turns –		
		norove commutation	voltage bui	ild_up po load		
			vonage bu	nu-up - no ioau		

	characteristics – load characteristics – losses and efficiency –			
	generators.			
	FIRST INTERNAL EXAMINATION			
III	DC motor – principle of operation – back emf – classification – torque equation – losses and efficiency – power flow diagram – performance characteristics of shunt, series and compound motors – starting of dc motors – necessity and types of starters – speed control – methods of speed control – testing – Swinburne's test – Hopkinson's test – separation of losses – retardation test – applications of dc motors.	9 hou	ırs	15%
IV	Transformers – principle of operation – types and construction, core type and shell type construction, dry type transformers, cooling of transformers – ideal transformer – transformation ratio – dot convention – polarity test – practical transformer – kVA rating – equivalent circuit – phasor diagram.	9 hou	ırs	15%
	SECOND INTERNAL EXAMINATION			
V	Transformer losses and efficiency – voltage regulation – OC & SC test – Sumpner's test – all day efficiency Autotransformer – saving of copper – current rating and kVA rating of autotransformers, parallel operation of single phase transformers, necessary and desirable conditions of parallel operation, on load and off load tap changers.	9 hou	ırs	20%
VI	3-phase transformer – 3-phase transformer connections – Δ - Δ , Y-Y, Δ -Y, Y- Δ , V-V – vector groupings Yy0, Dd0, Yd1, Yd11, Dy1, Dy11 – Scott connection – three winding transformer – tertiary winding – percentage and per unit impedance – parallel operation of three phase transformers.	9 hou	ırs	20%
END SEMESTER EXAM				

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI Student has to answer any 2 questions: $(2 \times 10) = 20$

Course N	o. Course Name	L-T-P -Credits	Vea	r of Introduction
EE206	MATERIAL SCIENCE	3-0-0-3	100	2016
Prerenuis	site : Nil		<u> </u>	2010
Course O	hiectives			
To	impart knowledge in the field of material	science and their ar	mlicatio	ons in electrical
en	oineering	selence and then a	pheatic	
Syllahus				
Conductir	g materials- properties-applications- Semi	conductor materia	ls- prop	erties-applications-
Magnetic	materials-classification-allovs of iron-fe	errites-Dielectric n	naterials	-polarization-solid
liquid an	d gaseous insulators-Dielectric breakdo	wn-superconductor	s-solar	energy materials-
Spectrosc	opy-micropscopy-magnetic resonance-nand	omaterials	5 Solul	energy materials
Expected	Outcome.		AT	
After the <i>a</i>	completion of the course student will be ab	le to:	A VL	-
1 De	escribe the characteristics of conducting and	d semiconducting n	naterials	1
1. DC	assify magnetic materials and describe dif	ferent laws related :	to them	
3 Cl	assify and describe different insulators and	to explain the beh	aviour c	of dielectrics in
sta	tic and alternating fields	r to explain the ben	uvioui c	i diciccuics in
4. De	scribe the mechanisms of breakdown in so	lids, liquids and ga	ses	
5. Cl	assify and describe Solar energy materials	and superconduction	ng mate	rials
6. Ga	in knowledge in the modern techniques for	r material studies	ing interes	
Taxt Bool	7•			
1 Dekker	A I : Electrical Engineering Materials Pre	ntice Hall of India		
2 G K M	thal : Electrical Enga Material Science Kt	anna Publishers		
2. OK MI	ular . Electrical Eligg Waterial Science. Ki			
$1 T_{2}$	reev. Electrical Engineerin Materials, Mir	Publications		
1.1a	ainal A B and Meinal M P Applied Solar	Energy An Intro	duction	Addisos Wesley
2. No	eser E Fundamentals of Gaseous Ionizati	on and Plasma Fla	ctronics	Wiley Series
J. INC	Plasma Physics 1971	on and I lasma Lie	cironics	, whey series
4 Na	idu M S and V Kamaraju High Voltage	Engineering Tata	McGrav	v Hill 2004
5 In	dulkar OS & Thiruyegadam S An Introd	uction to electrical	Engine	ering Materials S
Chan	1		Lingine	ing materials, s.
6. Ag	nihotri O. P and Gupta B. K. Solar selectiv	e Surface. John wil	lev	
7. Set	h. S.P and Gupta P. V. A Course in Electri	cal Engineering Ma	aterials.	Dhanpathrai
	Course	e Plan	,	1
Module	Contents	H	Iours	Sem.ExamMarks
	Conducting Materials: Conductivity- depend	ence on	8	
	temperature and composition – Materials for	electrical		
	applications such as resistance, machines, sol	ders etc.		
Semiconductor Materials: Concept, materials and properties-				
– Basic ideas of Compound semiconductors, amorphous and				
1	organic semiconductors- applications.			
	Dielectrics: Introduction to Dielectric polariz	ation and		
	classification – Clausius Mosotti relation- Beh	navior of		
	dielectric in static and alternating fields			1 60 /
			(15%
II	insulating materials and classification- proper	rties- Common	6	
	insulating materials used in electrical apparat	us-Inorganic,		15%

	organic, liquid and gaseous insulators- capacitor materials-		
	Electro-negative gases- properties and application of SF6 gas and its mixtures with nitrogen		
	Ferro electricity.		
	FIRST INTERNAL EXAMINATION	I	
Ш	Dielectric Breakdown: Mechanism of breakdown in gases, liquids and solids –basic theories including Townsend's criterion, Streamer mechanism, suspended particle theory, intrinsic breakdown, electro-mechanical breakdown- Factors influencing Ageing of insulators- Application of vacuum insulation- Breakdown in high vacuum-Basics of treatment and testing of transformer oil .	AM CAL	15%
IV	Magnetic Materials: Origin of permanent magnetic dipoles- Classification of magnetic materials -Curie-Weiss law- Properties and application of iron, alloys of iron- Hard and soft magnetic materials– Ferrites- Magnetic materials used in electrical machines, instruments and relays-	7	15%
	SECOND INTERNAL EXAMINATIO	N	
V	Superconductor Materials:-Basic Concept- types- characteristics-applications Solar Energy Materials: Photo thermal conversion- Solar selective coatings for enhanced solar thermal energy collection –Photovoltaic conversion – Solar cells -Silicon, Cadmium sulphide and Gallium arsenic – Organic solar cells.	7	20%
VI	Modern Techniques for materials studies: Optical microscopy – Electron microscopy – Photo electron spectroscopy – Atomic absorption spectroscopy – Introduction to Biomaterials and Nanomaterials	7	20%
	END SEMESTER EXAM		

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II.

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV. Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI. Student has to answer any 2 questions: $(2 \times 10) = 20$ **Note:** Each question can have maximum of 4 sub questions, if needed.

Course N	o. Course Name	L-T-P -Credits	Year of Introduction		
FF207	COMPLITER PROGRAMMING	2_1_0_3	2016		
Course O	hiectives	2-1-0-5	2010		
To	impart knowledge about programming in C				
	loom basiss of DVTHON				
	leani basics of F I THON.				
Syllabus	Introduction to Programming, Basic element	ts of C, Control stateme	nts in C, Arrays and		
Strings, F	inctions, Storage classes, Structures and Por	inters, File Management	in C, Introduction		
to Python	TECIMICIC	NOICH			
Exporto	Lautaama 1 Ability to design programs us	ing C languaga			
2 Ability	to develop simple programs using Python	ing C language			
2. Aum	to develop simple programs using 1 yulon	N I Y			
Text Boo	x•1)E Balaguruswamy Programming in AN	SIC Tata McGraw Hil	New Delhi		
2) John V	Guttag. Introduction to Computation and pro	ogramming using Pytho	n. PHI Learning.		
New Delh	i.	- <u> </u>	,		
Data Bo	ok (Approved for use in the examination)	: Nil			
Referen	ces:				
1. P. Nort	on, Peter Norton's Introduction to Computer	s, Tata McGraw Hill, N	ew Delhi		
2. Byron S	Gottfried, Programming with C, Schaun O	utlines – McGraw Hill.			
3. Ashok	Kamthane, Programming with ANSI & Turb	o C- Pearson education			
4. K.R Ve	nugopal and S.R Prasad, Mastering C - Tata	McGraw Hill			
5. Kelley,	Al & Pohl, A Book on C- Programming in C	C, 4th Ed,, Pearson Educ	ation		
	Course	Plan			
Module	Contents	Hou	rs Sem.ExamMarks		
	Introduction to Programming: Machine 1	anguage. 5hou	irs		
	assembly language, and high level language	e. Compilers			
	and assemblers.	1			
-	Flow chart and algorithm – Development	of algorithms			
I	for simple problems.				
	Basic elements of C: Structure of C progra	m –Keywords,			
	Identifiers, data types, Operators and expre	essions – Input			
	and Output functions		15%		
	Control statements in C: if, if-else, while	e, do <mark>-while and 7 hou</mark>	ırs		
II	for statements, switch, break, continue, go	to, and labels.			
	Programming examples.		15%		
FIRST INTERNAL EXAMINATION					
	Arrays and Strings: Declaration, initialisa	tion, processing 7 hou	Jrs 15%		
III	arrays and strings- two dimensional and m	ultidimensional			
	arrays -application of arrays. Example prog	grams.			
	Functions : Functions – declaring, defining	g, and accessing 7 hou	Jrs 15%		
	functions -parameter passing methods I	bassing arrays			
IV	to functions, Recursion.				
	Storage classes - extern, auto, register and	static. Example			
	programs.				
SECOND INTERNAL EXAMINATION					

N7	Structures – declaration, definition and initialization of	8 hours	20%
	structures, unions		
	Pointers: Concepts, declaration, initialization of pointer		
v	variables, Accessing a Variable through its Pointer Chain		
l	of Pointers, Pointer Expressions, Pointer Increments and		
	Scale Factor, Pointers and Arrays, examples		
	File Management – File operations, Input/Output	8hours	20%
	Operations on Files, Random Access to Files ,File pointer.		
VI	Introduction to Python :Basic Syntax, Operators, control statements, functions-examples.	M	
	TECHNIALAGIC	AT	

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering modules I&II

Student has to answer any 2 questions: (2 x 10) =20

Part C: 3 questions uniformly covering modules III&IV

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part D: 3 questions uniformly covering modules V&VI

Student has to answer any 2 questions: $(2 \times 10) = 20$

Note: Each question can have maximum of 4 sub questions, if needed.

Course No	D. Course Name	L-T-P-Credits	Year	of Introduction
EE208	MEASUREMENTS AND INSTRUMENTATION	3-1-0-4		2016
Prerequis	ite : Nil			
Course O	bjectives			
Te	o develop understanding of various electric	al measuring instrume	ents and	instrumentation
de	evices			
Syllabus	ADI ADINI II	1. Z. A. T., A.	Kad	
Measurem	ents standards, errors in measurements, operat	ing torques, classification	on of elec	trical meters,
Measurem	ent of voltage, current, resistance, power, ener	gy, high voltage and hig	gh current	s. Magnetic
Eveneeted	Outcomes	insducers	4	
After the c	completion of the course student will be able to	JUIG		
1 Con	pare different types of instruments their work	, king principles, advanta	oes and d	isadvantages
2. Exp	lain the operating principles of various ammet	ers, voltmeters and ohm	meters	isud vantages.
3. Des	cribe wattmetrs and energy meters			
4. Des	cribe different flux and permeability measuren	nents methods		
5. Ider	tify different AC potentiometers and bridges,			
6. Und	erstand the working and applications of cathod	de ray oscilloscope		
7. Ider	tify the transducers for physical variables and	to describe operating pr	rinciple	
Text Bool	κ:			
1. Saw	hney A.K., A course in Electrical and Electron	nic Measurements & ins	trumentat	tion, DhanpatRai.
2. J. B	. Gupta, A course in Electrical & Electronic M	leasurement & Instrume	ntation., S	S K Kataria&
Son	s			
3. Kal	si H. S., Electronic Instrumentation, 3/e, Tata I	McGraw Hill, New Dell	ni, 2012	
Reference		·		
$\begin{array}{c} 1. \ \text{Gol} \\ 2 \ \text{Cor} \end{array}$	aing E. W., Electrical Measurements & Measurements	Drantian Hall of India	er Pub.	
2. Coo 3. Stor	t M B Basic Electrical Measurements Prenti	i, Flenuce Hall of mula		
2. Stor	ver & Cage Electronic Measurements & Instru	mentation McGraw Hi	11	
5. E.O	Doebelin and D.N Manik. Doebelin's Mea	asurements Systems, si	xth editi	on. McGraw Hill
Edu	cation (India) Pvt. Ltd.	,,		
6. P.Pu	urkait, B.Biswas, S.Das and C. Koley,	Electrical and Electr	onics M	easurements and
Inst	rumentation, McGraw Hill Education (India) F	Pvt. Ltd.,2013		
	Cours	e Plan	6	
Module	Contents		Hours	Sem.ExamMarks
	General principles of measurements -	measurement system-		
	measurement standards - characteristics - e	rrors in measurement-		
	calibration of meters- significance of IS stand	ards of Instruments.		
I	Classification of meters - operating forces - o	essentials of indicating	9	15%
	instruments - deflecting, damping, controlling	torques.	-	-
	Ammeters and voltmeters - moving	coil, moving iron,		
	multipliers extension of range	incipies shunts and		
	Measurement of resistance: measurement	ment of insulation		
	resistance - loss of charge method m	asurement of earth		
	resistance	casurement of calll		
	Measurement of nower and energy Dynamo	neter type wattmater	10	15%
II	1-nhase and 3-nhase nower measurement -	1-nhase and 3-nhase	10	10/0
	energy meters (induction type) – electronic	c energy meter TOD		
	meter.			
	meter.			

	FIRST INTERNAL EXAMINATION		
111	Introduction to high voltage and high current measurements: Measurement of high DC voltages - measurement of high AC voltages - electrostatic voltmeters – sphere gaps - DC Hall effect sensors - high current measurements. Study of Phasor Measurement Units (PMU). Current transformers and potential transformers – principle working, ratio and phase angle errors – numerical problems, Clamp on meters.	9	15%
IV	Magnetic Measurements: Measurement of flux and permeability - flux meter - hall effect Gaussmeter - BH curve and permeability measurement - hysteresis measurement- ballistic galvanometer - principle- determination of BH curve - hysteresis loop. Lloyd Fisher square — measurement of iron losses Measurement of rotational speed using proximity sensors and optical sensors.	9_	15%
	SECOND INTERNAL EXAMINATION		
V	DC & AC potentiometers - General Principle - calibration of ammeter, voltmeter and wattmeter using potentiometer. AC Bridges: Maxwell's bridge- Schering bridge and Wien's bridge Oscilloscopes – Basic principle of signal display - Block diagram and principle of operation of general purpose CRO - vertical deflecting system - horizontal deflection system - basic sweep generator - XY mode and Lissajous patterns - applications of CRO - dual trace oscilloscope. digital storage oscilloscope	9	20%
VI	Transducers - Definition and classification - common transducers for measurement of displacement, velocity, flow, liquid level, force, pressure, strain and temperature - basic principles and working of LVDT, electromagnetic and ultrasonic flow meters, piezoelectricforce transducer, load cell, strain gauge- bridge configuration for four strain gauges, RTD, Thermistors, thermocouple, Need for instrumentation system, data acquisition system.	9	20%
END SEMESTER EXAM			

Part A: 8 questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40 **Part B**: 3 questions uniformly covering modules I&II

Student has to answer any 2 questions: $(2 \times 10) = 20$

Part C: 3 questions uniformly covering modules III&IV Student has to answer any 2 questions: (2 x 10) =20

Part D: 3 questions uniformly covering modules V&VI Student has to answer any 2 questions: $(2 \times 10) = 20$

Course c	ode Course Name	L-T-P - Credits		Year of	
			Int	roduction	
EE209	Electrical Technology	3-1-0 -4		2016	
Prerequis	ite : Nil				
Course O	bjectives				
• To	understand about the network Elements, type	s of networks & analy	sis of cor	nplex	
cir	cuits using Mesh current & Nodal voltage me	thod.			
• To	impart knowledge on the solution methods of	f AC and DC circuits.	A		
• To	understand the working principle and charact	eristics of all electrication	al machine	es	
Syllabus Types of I theorems-A measureme Characteris equation- c their applic	Networks- mesh current & Nodal voltage metho AC circuits- RLC circuits- series and parallents in three phase circuits-DC machines context of DC shunt and series motor and generation.	od for DC and AC cir lel resonance-Three p construction – workin rator-Starters- Concept iple of induction motor	cuits-Basic bhase circ g- EMF of transf s-special n	cs of Circuit uits- Power equation – formers-EMF nachines and	
Expected	outcome.				
i. Ur	derstand the circuit analysis and theorems.				
ii. Ur	derstand the concept of three phase RLC circuit	S.			
iii. Ge	t knowledge in construction and working of dc	machines			
iv. Ge	t knowledge in special machines and their appli	cations.			
v. Ur	derstand the construction and working of induc	tion machines.			
Text Bool	κ:				
1. Theraja Machines ³	B.L., Theraja A.K. A Text Book of Electrical , publication division of Nirja construction &	<i>Technology</i> , Vol.II "A development (p) Ltd	AC & DC ., New De	elhi, 1994.	
2. Sudhak McGraw I	ar, A. and Shyam Mojan, S.P. <i>Circuits and Ne</i> Hill Publishing Co. Ltd, New Delhi, 1994.	etworks Analysis and S	Synthesis,	Tata	
Reference	25:		· · ·		
1. Raina k P Ltd200	K.B., Bhattacharya S.K. <i>Electrical Design Est</i>	imating & Costing, N	ew Age I	nternational	
2. Muthus	subraman <mark>ian R & Ayyap</mark> pan K, <i>Circuit The</i> e	ory, Anuradha Publis	hign Pvt	Ltd., Tamil	
INadu 199			00		
3. Arumuş	gam & Premkumar, <i>Electric Circuit Theory</i> , K	Lhanna Publishers. 200	02		
	Course P	lan			
Module	Contents		Hours	Sem. Exam Marks	
	BASICS OF CIRCUIT ANALYSIS				
	Types of Networks – Sources transformati	on – Star – Delta			
Ι	transformation – formation of matrix equati	on and analysis of	10	15%	
circuits using mesh current & Nodal voltage method for DC					
	and AC circuits.				
	BASICS OF CIRCUIT THEOREMS				
II	Thevenin's theorem – Norton's theorem	– superposition	9	15%	
	theorem – maximum power transfer theo	rem – statement,	-		
illustration & application to DC circuits.					

FIRST INTERNAL EXAMINATION				
III	AC CIRCUITS: Review of Basic concepts – solution of RLC circuit – power – power factor and energy relation – series resonance – parallel resonance – Q factor – bandwidth. Three phase star-delta connections – characteristic equations – phasor diagrams – solution of 3-phase balanced circuits & unbalanced circuits – Three phase power measurement suing watt meters	10	15%	
IV	DC MACHINES: Review of constructional details – Working principle of DC generator – EMF equation – No load & load characteristics of shunt generator – working principle of DC motor – back emf – equations for torque & power – characteristics of shunt, series & compound motors – Necessity of starters and their types— power stages – efficiency.	9	15%	
	SECOND INTERNAL EXAMINATION			
V	TRANSFORMERSConstruction – working principle – emf equation & voltageregulation – vector diagram3-PHASE INDUCTION MOTORSProduction of rotating magnetic field – torque equation, torque– slip characteristics – power stages and efficiency – simpleproblems – starters & methods of speed control (quantitativetreatment only).	10	20%	
VI	SPECIAL MACHINES / APPLICATIONS (Qualitative treatment only) Working principle of single phase induction motor – capacitor start & capacitor run motors – Universal motor – stepper motor – servomotor - Synchronous motor Selection of motors with justifications for the following services, *Machine tools *Washing machine *Cranes *WetGrinder *Steel mills * Mixie *Hoist *Electric traction	9	20%	
	END SEMESTER EXAM			

QUESTION PAPER PATTERN

Maximum Marks : 100

Exam Duration:3 hours

PART A: FIVE MARK QUESTIONS

8 compulsory questions –1 question each from first four modules and 2 questions each from last two modules (8 x 5= 40 marks)

LSUU,

PART B: 10 MARK QUESTIONS

5 questions uniformly covering the first four modules. Each question can have maximum of three sub questions, if needed. Student has to answer any 3 questions

(3 x10 = 30 marks)

PART C: 15 MARK QUESTIONS

4 questions uniformly covering the last two modules. Each question can have maximum of four sub questions, if needed. Student has to answer any two questions

(2 x15 = 30 marks)

Course	Course Name	L-T-P -Credits	Y	ear of
code			Intr	oduction
EE212	ELECTRICAL TECHNOLOGY AND SAFETY	3-0-0-3		2016
Prerequis	ite: Nil			
Course O	bjectives			
•	To understand the concepts in the working of electric	cal generator, mot	or, and	
	transformer.			
•	To learn the basic function of electrical switch gear.	TANA		
•	To make the students acquire a sound knowledge in	fundamentals of e	electrica	al safety
•	To impart some fundamentals about the safety provi	sions in Indian Ele	ectricity	Act and
	Rules.	ICAL		
Syllabus		V		
Constructi	on and Principle of operation of DC Generator	- Dc motor - In	duction	motor –
Alternator	- Synchronous motor – Transformer - Protectiv	e Relays -Types -	Circuit	breaker -
Arc pheno	omenon - Protection against over voltages –Light	ning –Grounding	-Types	. Electric
shock - eff	fects and its prevention - Safety during installation o	f plant and equipr	nent - I	Hazardous
zone - Ele	ctrical safety in Residential, Commercial and Agric	ultural Installatio	ns - H	lazards of
static elect	ricity - Safety provisions in Indian Electricity act and	Rules.		
Expected	loutcome		<u> </u>	
• A	t the end of this course, the students will have expose	d to fundamentals	of ele	ctrical
m	achines and gained idea about electrical safety.			
 V.K Mehta, Rohit Mehta. "Principles of Electrical Machines". S Chand Publishers W.Fordham Cooper. "Electrical safety Engineering" Butterworth and company London S.L. Uppal : A Textbook of Electrical Engineering, Khanna Publishers, Delhi H. Cotton : Electrical Technology, Wheeler Publishing Company Indian Electricity Act and Rules, Government of India. S. Rao, and H.L. Saluja : Electrical Safety, Fire Engineering and Safety Management, Khanna Publishers, Delhi M.G. Say : Electrical Earthing and Accident prevention, Newnes, London, 1954 V.K Mehta, Rohit Mehta, "Principles of Power System".S Chand Publishers 				
• Acc	cident Prevention Manual for Industrial Operations :	National Safety C	Council,	Chicago.
• <u>ww</u>	w.osha.gov			
 	Course Plan			9
Module	Contents		Hours	Sem. Exam Marks
Ι	Construction and Principle of operation of d.c ma equation of a generator – Types of dc generat Condition for maximum efficiency–Armatur Compensating winding-characteristics of shunt compound generators –Critical field resistance and Parallel operation. Dc Motor Characteristics–speed of	chines – e.m.f or – losses – re Reaction– r, series and critical speed– control.	6	15%
Π	Synchronous machines – types – e.m.f equation – v – armature reaction and leakage resistance. Synchr methods of starting – applications. Induction	vinding factors onous motor – on Motors –		15%

	Construction and principle of operation – equivalent circuit –	7	
	I orque – slip characteristics – method of starting – applications.		
	Construction and Principle of operation of single phase		
	transformers - e.m.f equation - phase diagrams - equivalent		
III	circuit–Tests–regulation – losses and efficiency. Protective relays		
	- Requirement of relay – types of protection – classification – distance relay differential relay state relays	7	15%
IV	Circuit breakers – function of switch gear – arc phenomenon – initialization of an arc– Methods of Arc Extinction–Types–Arc voltage –restriking voltage and recovery voltage. Fuses – Characteristics– types –selection – advantages and disadvantages – MCB and ELCB. Faults in power systems – causes – types. Protection against over voltages– causes–Lightning–Lightning arrester.	7	15%
	SECOND INTERNAL EXAMINATION		
V	Grounding – neutral grounding – solid grounding – resistance grounding – arc suppression coil grounding. Equipment grounding for safety – Human safety aspects – effect of current and voltage on human beings – typical V-I characteristics of skin – Electric shocks and their prevention– Medical Analysis of shock. Insulation – classes of insulation – FRLS insulation – continuity test. Safety during installation of plant and equipment. Safe sequences in installation – risk during installation. Safety during testing and commissioning. Test on relays – protection and interlock systems for safety. Hazardous zones – classification of hazardous zones. Eire prevention and fire fighting in power stations. Substations	7	20%
VI	causes of initiation of fire-Fire Extinguishing Techniques. Electrical safety in Residential, Commercial and Agricultural Installations – Case study. Hazards of static electricity. Safety provisions in Indian Electricity Act & Rules.		
	END SEMESTER EXAM		
QUESTI	Marks: 100 Duration: 3 Hours		
Part – A	5 MARK OUESTIONS		
There will be two questions from module 2 and module 3 and one question each from remaining modules (8x5 = 40 marks) PART B : 10 MARK QUESTIONS			
5 questions uniformly covering the first four modules. Each question can have maximum of three sub questions, if needed. Student has to answer any 3 questions $(2 \times 10 - 20 \text{ mode})$			

(3 x10 = 30 marks)

PART C: 15 MARK QUESTIONS

4 questions uniformly covering the last two modules. Each question can have maximum of four sub questions, if needed. Student has to answer any two questions

(2 x 15 = 30 marks)

Course	Course Name	L-T-P-	Year of		
code		Credits	Introduction		
EE214	ELECTRICAL TECHNOLOGY AND	3-0-0-3	2016		
	INSTRUMENTATION				
Prerequis	ites: Nil				
Course O	bjectives:				
• To	impart understanding of the basic working principles of DC and	AC machin	es.		
• To	impart understanding of the basic principles of instrumentation a	nd its appli	cations.		
Syllabus:	ALL ADDOL MALA	V I			
	TECHNOLOGICA				
DC Gener	ator- Load Characteristics; DC Motors- Speed & Torque, Perform	nance Char	acteristics; 3ph		
Induction	Motors-Torque Equation, Characteristics; Alternators- C	onstructior	i; Regulation-		
Transform	ers, Regulation Efficiency; Instrumentation- Calibrati	on, Error	s; Transducer		
Classifica	ion.				
Expected	Outcome:				
Upon suce	ressful completion of the course, the student will be able to:				
i. Ur	derstand the basic working principle, construction, types, perfor	mance cha	acteristics and		
	derstand the basic working principle construction types	EME og	untion voltage		
ree	rulation EMF MMF methods to determine the voltage regulation	of alternat	ors		
iii. Ur	derstand the basic working principle, construction, types, e	quivalent	circuit, losses,		
eff	iciency, regulation and applications of transformers and predet	ermine thei	r efficiency by		
со	nducting OC and SC.				
iv. Ur	derstand the basic principles of instrumentation, measurement sta	ndards and	types of errors		
1n	instruments and measurements and its applications.				
Text Boo					
• Dr. P	S. Bimbra; Electrical Machinery; Khanna Publishers.	1.0	-		
• J. B. (Supta; Theory and principles of Electrical Machines; S. K.Kataria	and Sons	l'ex.		
D.f	LStu,				
Kelerence	BOOKS:	tion Dhan			
• A.K.S	awnney; Electrical and Electronic Measurements and Instrument	ation; Dhan	patkal.		
• Alexa	nder Langsdorf A. S.; Theory of AC Machinery; Mc-Graw Hill.				
 James Meas 	rement	entation 1	or Engineering		
Sav N	G · Performance and Design of AC Machines: ELBS				
• Willia	m D. Cooper, A.D. Helfrick: Electronic Instrumentation and	Measureme	nt Techniques:		
Prentice Hall.					
	Course Plan				
			Sem.		
Module	Content	Hou	rs Exam		
			Marks		
т	D.C. Generator: O.C.C. ; Condition for Self Excitation; 1	Field _	150/		
1	Critical Resistance; Critical Speed; Load Characteristics	of	15%		
<u> </u>	-				

	Generators; Losses; Power Flow Diagram; Efficiency, Condition for			
	Maximum Efficiency; Applications.			
Π	D.C. Motors: Back EMF; Speed and Torque Equation; Starting, Testing of D.C. Motors, Brake Test; Swinburne's Test; Performance and operating characteristics of Shunt, Series and Compound Motors; <i>Applications</i> .	7	15%	
	FIRST INTERNAL EXAM			
III	Three Phase Induction Motor : Production of Rotating Magnetic Field; Torque Equation; Torque Slip Characteristics, Equivalent Circuit; <i>Application</i> . Single Phase Induction Motor: Different Types; <i>Application</i> .	7	15%	
IV	Alternators: <i>Construction Details</i> , Type; EMF Equation (Winding Factor need not be derived); Synchronous Impedance; Regulation by EMF and MMF Method.	7	15%	
V	Transformer : <i>Construction, Working, Types</i> , EMF Equation, No Load Current; Equivalent Circuit; Phasor Diagram, Regulation, Efficiency, Determination of Regulation and Efficiency from O.C. and S.C. tests; <i>Cooling of Transformer</i> ; Applications.	7	20%	
VI	IntroductiontoInstrumentationanditsApplications:Classification of Instruments; Standards and Calibration; Errors inInstruments and Measurements; Classification of Transducers; StrainGauges;L.V.D.T.(Linear Variable Differential Transformer),Mc.LeodGauge, PiraniGauge, Hot-wire Anemometers; ConstantTemperature and Constant CurrentMethods.	7	20%	
END SEMESTER EXAM				

QUESTION PAPER PATTERN:

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

Estd.

PART B

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.

Course code		Course name	L-T-P- Credits	Ye	ear Of	
EE216		FLECTRICAL ENGINEERING	3-0-0-3	Intro	2016	
Prerequis	ite : Nil					
Course of	ojectives					
To introdu	ice the fund	damental concepts of transformer, alternat	tor, DC mae	chine, inc	luction	
motor and	indicating	instruments				
Syllabus						
Transform	ers- Princi	ple of operation & different types, DC ge	enerator, D	C Motor,	Alternators	
in detail,	Concepts	of three phase Induction motor and t	ypes, Pri	nciple of	f Indicating	
instrument	ts.	CLINDIOC	IC	AT		
Expected	outcome	CENULUU		AL		
The studer	nts will	LUNITA/DD CI	TV			
1. 	Get the ba	asic idea of Electrical engineering.	L T	-		
11. :::	Be able to	o differentiate between the types of motor	s and transi	ormers		
111.	gain infor	mation about the function of various mea	suring insu	ruments a	ind using	
Toxt Book						
1 E	vs Hughes El	ectrical & Electronic Technology 8th ed Per	arson Educa	tion Delh	i 2002	
2. B.I	. Theraia	and A.K. Theraia. AC and DC machines V	/olume II	uon, Dem	n, 2002.	
Reference	e books					
1 De	l Toro V F	Electrical engineering fundamentals 2/e I	Prentice Ha	ll India I	Eastern	
Eco	onomy Ed	ition. 1998.	i rentice i iu	ii iiidid. I	Lustern	
2. E. Y	W. Goldin	g and F. G. Widdis, Electrical Measureme	ents and Me	easuring		
Ins	truments,	oth ed., AH Wheeler & Company, Calcutt	a, 1993.	8		
3. H.	Cotton, Ac	lvanced Electrical Technology, Sir Isaac I	Pitman and	Sons, Lo	ondon, 1974	
		Course Plan				
Module		Contents		Hours	Semester	
					Exam	
					Marks	
Ι	Transform	ners- Principle of operation - emf e	quation -	5	15%	
	Phasor d	iagram - Equivalent circuit - OC and S	SC tests –			
	Basic pr	inciples of auto transformer and thr	ee phase			
	transform	ler	1			
TT	DC Gen	erator EME equation Armature r	eaction	Q	15%	
11	Commute	ation - interlopes - power flow diagram -		0	1370	
	losses a	nd efficiency – voltage regulation –	- narallel			
	operation	– load sharing	puruner			
FIRST INTERNAL EXAMINATION						
III	DC Mot	or- back E.M.F. – speed equation –	torques –	8	15%	
	performa	nce characteristics - power flow diagra	am losses			
	and effic	ciency – starter- two point and three	point –			
	swinburn	s test – thyristor control of series and shu	nt motor.			
					1 50 /	
IV	Alternato	r- Rotating field - Frequency effect of di	stribution	6	15%	
	ot wind	ing - emt equation – Basic prince	ciples of			

	synchronous motor – Losses and Efficiency - Torque equation - Starting methods - induction motor - Constructional features - Principle of operation of 3 phase induction motor – Vector diagram and equivalent circuits - Starting and speed control of squirrel cage and wound rotor induction motor		
	SECOND INTERNAL EXAMINATION		
V	Three phase Induction motor- types – torque equations- torque slip and torque speed characteristics- power flow diagram – efficiency – equivalent circuit- induction generator Special machines – single phase FHP motor starting methods- double field revolving theory-types and applications – stepper motor –classifications and applications – servomotors – classifications and applications –shaded pole motors –applications		20%
VI	Principle of Indicating instruments- moving coil, moving iron and dynamometer type instruments- Extension of range of voltmeter and ammeter - Measurement of 3 phase power by two wattmeter method – Principle and working of Induction type energy meter- DC slide wire, potentiometer.	9	20%

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN:

Maximum Marks: 100

Part A

Answer any two out of three questions uniformly covering Modules 1 and 2 together. Each question carries 15 marks and may have not more than four sub divisions

(15 x 2 = 30 marks)

Exam Duration: 3 Hours

Part B

Answer any two out of three questions uniformly covering Modules 3 and 4 together. Each question carries 15 marks and may have not more than four sub divisions.

(15 x 2 = 30 marks)

Part C

Answer any two out of three questions uniformly covering Modules 5 and 6 together. Each question carries 20 marks and may have not more than four sub divisions.

$$(20 \text{ x } 2 = 40 \text{ marks})$$

Course No.	Course Name	L-T-P - Credits	Year of Introduction
EE231	ELECTRONIC CIRCUITS LAB	0-0-3-1	2016
Course Object	ives		2010
To design and	develop various electronic circuits using di	screte components and	OPAMPs.
List of Exercis	es/Experiments : (Out of 18 experiments	listed, 12 experiments	are mandatory.
1.Study & Use	of CRO: Measurement of current voltage,	, frequency and phase sl	nift.
2.Half wave an	d Full wave (Centre-tapped and bridge) Re	ectifiers with and without	ut filters-
Calculation of	Ripple factor, Rectification efficiency, and	% regulation.	
3. Clipping circ	cuits using diodes	CIC II	
4. Clamping cir	rcuits using diodes	(ILAL	
5. RC coupled	amplifier using BJT in CE configuration-1	Measurement of gain, in	put and
output impedar	ice and frequency response	IIY	-
6. JFET amplif	ier- Measurement of voltage gain, current	gain, input and output in	npedance
7.Design and te	esting of simple zener voltage regulators		
8.OPAMP circ	uits – Design and set up of inverting and ne	on-inverting amplifier,	scale changer,
adder, integrate	or, differentiator		
9. Precision rec	tifier using Op-amps		
10.Phase shift	oscillator using OPAMPs.		
11.Wein's Brid	ge oscillator using OPAMPs.		
12.Waveform	generation – Square, triangular and sawtoo	th wave form generation	n using
OPAMPs.			
13. Basic comp	parator and schmitt trigger circuits using O	p-amp	
14. Design and	l testing of series voltage regulator using z	ener diode	
15. Astable and	I monostable circuit using 555 IC		
16. RC phase s	hift oscillator using BJT		
17.Introduction	to circuit simulation using any circuit sim	ulation software.	
18. Introduction	n to PCB layout software		
			-
Expected out	come.		' DIT 1
I ne student si	louid be able to design and implement var	lous electronic circuits t	ising BJTs and
OPAMPS.	Lotu.		
Toyt D	alt/Defenences		
1 Molvin	Dok/References:	7/2 Tata MaCrow Hill	2010
$\begin{array}{c} 1. \text{Ivial VIII}\\ 2 \text{Rowless} \end{array}$	ad R. L. and L. Nashelsky Electronic Day	ices and Circuit Theory	$\frac{2010}{10}$ Paarson
2. Doylest	on India 2009	ices and Cheun Theory	, 10/C, 1 Carsoll
3 Choudh	ury R Linear Integrated Circuits New A	re International Publish	ers 2008
J. Millma	n L and C C Halkias Integrated Electron	cs. Analog and Digital	Circuits and
4. Iviiiiila	a Tata McGraw-Hill 2010	. Analog and Digital	
S ysichi	5, 1 a a w 0 a v - 11 a v -		

Systems, Tata McGraw-Hill, 2010.

EE232Electrical Machines Lab - I0-0-3-120)16					
EE232Electrical Machines Lab - I0-0-3-120)16					
Course Objectives						
To learn the working and testing methods of DC mechines and transformers						
To learn the working and testing methods of DC machines and transformers.						
List of Exercises/Experiments:						
THIMDUOLIVILIU						
Part A – DC Machines						
1. Open circuit characteristics of DC shunt generator						
Objectives:						
a) Predetermine the OCC at different speeds						
b) Determine the critical field resistance						
c) Obtain maximum voltage built up with given shunt field resistance						
d) Obtain critical speed for a given shunt field resistance						
2. Load test on DC shunt generator						
Objectives:						
a) Determine the external & internal characteristics						
b) Deduce the armature reaction curve						
3. Load test on DC compound generator						
Objectives:						
a) Determine the external characteristics cumulative compound condition						
b) Determine the external characteristics differential compound condition						
4. Brake test on DC shunt motor						
Objectives:						
Plot the following characteristics						
1) Efficiency Vs Output						
ii) Line current vs Output						
Esta.						
iv) Speed vs forque						
v) Line current Vs Torque						
5. Brake test on DC series motor						
Objectives:						
i) Efficiency Va Output 2014						
i) Line surrent Vs Output						
iii) Speed Va Output						
iv) Speed Vs Output						
y) Line current Vs Torque						
6 Swinburne's test on a DC shunt machine						
Objectives.						
Predetermine the armature current and nercentage efficiency when the machine on	erates as a					
motor and as a generator for various load conditions and plot efficiency. Vs output curves						
7 Honkinson's test on a nair of DC machines						
Ohiectives.						
Determination of the efficiency of the given do shunt machine working as a motor	and					

generator

under various load conditions.

- 8. Retardation test on a DC machine
 - Objectives:
 - a) Separation of hysteresis, eddy current, friction & windage losses
 - b) Find the moment of inertia of the rotating system
- 9. Separation of losses in a DC shunt motor
 - Objectives:
 - a) Separation of hysteresis, eddy current, friction & windage losses
 - b) Plot the losses vs speed curves

Part B – Transformers

10. O.C. & S.C. tests on the single phase transformer

Objectives:

- Predetermination of the following
 - a) Efficiency at different load conditions and different power factors
 - b) Regulation at different load conditions and different power factors
 - c) Equivalent circuit referred to HV and LV sides
 - d) UPF load at which efficiency is maximum
 - e) Power factors at which regulation is maximum and zero
 - f) Regulation vs. power factor curves
- 11. Load test on the single phase transformer

Objectives:

- a) Determination of the efficiency at different load conditions and unity power factor
- b) Determination of the regulation at different load conditions and unity power factor
- c) Plot efficient vs. output & regulation Vs output curves
- 12. Separation of losses in a single phase transformer
 - Objectives:

Separate the hysteresis & eddy current losses at different voltages & different frequencies keepingV/f constant & plot losses vs. frequency curves. Hence

- i) Separate the hysteresis & eddy current losses at normal voltage & different frequencies &
- plot losses vs. frequency curves 510
- ii) Separate the hysteresis & eddy current losses at normal frequency & different voltages &
- plot losses vs. voltage curves.
- 13. Sumpner's test

Objective:

- a) Predetermination of efficiency at different load conditions and power factors
- b) Predetermination of regulation at different load conditions and power factors
- c) Plot efficiency vs. output & regulation vs. power factor curves
- d) Obtain the equivalent circuit referred to LV & HV sides
- 14. Scott connection of single phase transformers

Objectives:

Determine the efficiency at different load conditions when

- a) Main transformer alone loaded
- b) Teaser transformer along loaded
- c) both transformers loaded under balanced conditions
- d) both transformers loaded under unbalanced conditions
- e) Plot efficiency vs. output curves for each case.

15. Parallel operation of single phase transformers

Objectives:

- a) To determine the load sharing of each transformer by their equivalent impedances
- b) To verify the load sharing by actual measurements
- 16. Three phase connection of single phase transformers

Objectives:

- a) Determine the polarity of single phase transformers
- b) Connect three single phase transformers in star-star configuration
- c) Connect three single phase transformers in star-delta configuration
- d) Determine the transformation ration in the above cases
- 17. O.C. & S.C. tests on the Three phase transformer

Objectives:

Predetermination of the following

- a) Efficiency at different load conditions and different power factors
- b) Regulation at different load conditions and different power factors
- c) Equivalent circuit referred to HV and LV sides
- 18. Load Test on V connected Transformers

Objectives:

Connect two single phase transformers in V-V connection and conduct a load test to plot the efficiency curve.

Out of the above experiments, minimum twelve experiments should be done in lab taking at least six experiments from both Part A and Part B.

Expected outcome:

After the successful completion of the course, the students will be able to test and validate DC generators, DC motors and transformers

After the successful completion of this course, the students will be able to

- 1. Analyse the characteristics of different dc generators
- 2. Separate the losses in dc motors
- 3. Analyse the performance of different types of dc motors
- 4. Determine the performance characteristics of single phase transformers
- 5. Compare the performance of transformers in different modes of operations and connections

2014

Text Book:

- 1. Bimbra P. S., *Electrical Machinery*, 7/e, Khanna Publishers, 2011.
- 2. Theraja B. L., A Textbook of Electrical Technology, S. Chand & Company, New Delhi,
- 2008.

Course No.	Course Name	L-T-P - Credits	Year of Introduction
EE233	PROGRAMMING LAB	0-0-3-1	2016
Course Objective	28	•	1
l o impart knowl	edge and develop skills in program	ming	
List of Exercises/	Experiments : (Minimum 12 exerci	ses/experiments are mai	ndatory)
A	FLADUUL	NALAM	
1. At least for	ur simple programs using input output	t statements (example: a	rea of rectangle,
circle, etc)	EUFINULU	AIL AL	
2. At least for	ur Simple programs using decision sta	tements (Example: Even	or odd, pass or
fail)	UNIVER	NI I Y	
3. At least for	ur Programs using Control statements	and decision statements	(Example
maximum, m	inimum of a given set of numbers, hc	f, lcm)	
4. Program to	add n numbers		
5. Programs t	o print patterns		
6. Program to	check whether a number is prime		
7. program to	generate Fibonaacii series		
8. Array mar	nipulation (searching, insertion and	sorting)	
9. Few progr	rams using pointers		
10. Functions	Pass by value Pass by reference		
11. Recursive	functions (example: Fibonaacii serie	es and factorial)	
12.String mar	nipulation – compare, copy, reverse of	perations	
13. Matrix of	berations: addition multiplication, determined to a file Manai	erminant and inverse	
14. Reading 1	folgebraic and transcondental equation	ong and appending of mes	Danhaan
nethod- c	omparison	ons. Disection, newton-	Raphson
16 Introducto	ory programs using Python		
17. Function	calls in Python		
- ,	Estd.		
Expected outcom	me. 1. Ability to design programs usin	ng C language	
-	2. Ability to develop simple progr	cams using Python	
References:	2014	1 hours of the	
1. E. Balagurus	wamy, <i>Programming in ANSI C</i> , Tata	McGraw Hill, New Dell	i
2. Kernighan, E	Brian W., and Dennis M. Ritchie. The	C programming language	e. Vol. 2.
Englewood C	lifts: prentice-Hall, 1988.		
3. Introduction t	o computation and programming usin	g Python, John V. Guttag	, ,
гпі Learning, N			

4. Downey, Allen, Jeffrey Elkner, and Chris Meyers. *How to think like a computer scientist: learning with python*. John Wiley 2015.
5. Lambert, Kenneth. Fundamentals of Python: first programs. Cengage Learning, 2011.

Course No.	Course Name	L-T-P - Credits	Year of Introduction
EE234	CIRCUITS AND MEASUREMENTS LAB	0-0-3-1	2016
Course Object	tives		
To deve	elop measurement systems for various electrical ci	rcuits and syster	ns and to use
differer	t transducers for measurement of physical variable	es.	
List of Exercis	ses/Experiments : (18 experiments are listed, out	of which 12 exp	eriments are
mandatory).	ADI ADDITI IZA	TAKA	
1 17 10	артавільні ка	IAM	
1. Verification	n of Superposition Theorem in de circuits.	CAI	
2. Vermication	ion of impedance, admittance, power factor and re	al/reactive/ ann	arent nower
drawn in R	LC series/parallel circuits		arent power
4. 3-phase por	wer measurement using one wattmeter and two-wa	attmeter method	
5. Determinat	ion of B-H curve, μ-H curve and μ-B curve of an i	ron ring specim	en.
6. Measureme	nt of voltmeter and ammeter resistances using Wh	eatstone's bridg	ge and Kelvin's
double brid	ge and extension of range of voltmeters and amme	eters	
7. Measureme	ent of self/ mutual inductance and coupling co-effi	cient of iron cor	ed coil
and air-core	ed coil.	• 1• 1	
8. Calibration	of meters and measurement of unknown resistance	e using slide- w	ire
9 Calibration	of single phase energy meter by direct and phanto	m loading at va	rious power
factors	or single phase energy meter by uncer and phane	in loading at va	nous power
10. Calibration	of 3-phase energy meter using standard wattmete	r.	
11. Calibration	of wattmeter using Vernier dial potentiometer		
12. Measureme	ent of capacitance using Schering Bridge.		
13. Extension of	of instrument range by using Ins <mark>tr</mark> ument transform	ers(CT and PT)	
14. Characteris	tics of Thermistor, RTD, and Thermocouple		
15. Characteris	tics of LVDT.		
16. Characteris	tics of strain gauge/ Load cell.		
17. Measureme	ent of energy using electronic Energy meter/10D	neter	
Fynected Out	come:		
After the comp	letion of the course student will be able to:		
1. Analyz	e RLC circuits and coupled circuit to obtain the vo	ltage -current re	lations
2. Verify	DC netwok theorems by setting up various networ	ks	
3. Calibra	te the single phase and three phase energy meter a	t various power	faqctors
4. Measur	e power in a single and three phase circuits by var	ious methods	
5. Determ	ine magnetic characteristics of iron ring specimen		
6. Measur	e high and low resistances using various bridges		
7. Use Ele	ectronic energy meter, TOD meter and clamp on m	eter	
Lext Book:	AV. A course in Flootnicel and Flootneric Measure	monto P-instance	montation
1. Sawnney	A. A course in Electrical and Electronic Measure	emenus & instrui	mentation,
2 IR Gunta	· A course in Electrical & Electronic Measuremet	nt & Instrumente	ation SK
Z. J. B. Gupta Kataria &	Sons		
	~ • • • • •		

3. Kalsi H. S., Electronic Instrumentation, 3/e, Tata McGraw Hill, New Delhi, 2012

Course code	Course Name	L-T-P - Credits	Year of Introduction
EE235	Electrical Technology lab	0-0-3-1	2016
Prerequisite : El	E209 Electrical technology		
Course Objectiv • To impart transform	ves t working knowledge on electrical circ ters.	uits, A C machines, DC 1	nachines and
List of Exercises 1. Verification of	s/Experiments : (Minimum 10 experim Thevenin's theorem	nents are mandatory)	
2. Verification of	Norton's theorem	SI I Y	
3. Verification of	Superposition theorem		
4. Verification of	Maximum power transfer theorem		
5. Power measure	ement in 3 phase balanced circuits		
6. Power measure	ement in 3 phase unbalanced circuits		
7. Load test on D	C shunt motor		
8. Load test on D	C series motor		
9. Speed control	of DC shunt motor		
10. Open circuit	characteristics of DC series motor.		
11. Open circuit	characteristics of dc shunt motors		
12. Swinburne's	test and separation of losses in DC mac	hine.	
13. Load test on	single phase transformer		
14. Load test on 2	3-phase induction motor		
15. No load test of	on 3- phase induction motors.		
List of major eq DC shunt motor,	uipment , DC series motor, DC series motor, si	ngle phase transformer,	3-phase induction
Expected outco	ome.		
On comp electric ci	letion of this lab course, the students ircuits and the performance characterist	will be able to understation of electrical machines	nd the concept o 5.
Text Book: Theraja B.L., T	heraja A.K. A Text Book of Electrical	Technology, Vol.II "AC	& DC Machines'

publication division of Nirja construction & development (p) Ltd., New Delhi.

Course code	Course Name	L-T-P -Credits	Year of
			Introduction
EE236	ELECTRICAL TECHNOLOGY	0-0-3-1	2016
	AND SAFETY LAB		
Prerequisite:	EE212 Electrical technology and safety	,	
Course Obje	ctives		
• To	provide practical experience for verifyi	ng circuit theorems.	
• To	expose the students on the operation of	Dc motors, Induction r	notors, transformer
an	d give them experimental skill.	NALAN	$\vee 1$
	TECLINIOI	ADICA	1
	TECHNOR	JULA	L.
List of Exper	iments:	CITV	
- 1.	Verification of Kirchhoff's Laws	JIII	
2.	Verification of Superposition Theorem		
3.	Measurement of power in an A.C circu	it by 3 ammeter and 3	voltmeter method
<mark>4</mark> .	Load test on d.c series motor		
5.	Speed characteristics of d.c shunt moto	r	
6.	Regulation of Transformer		
7.	Load characteristics of 3 phase induction	on motor	
<u>8</u> .	Study of protective relays and circuit b	reakers	
9.	Study of B H curve on C B O	testing	
10	Study about cardio pulmonary resuscita	ation(CPR)	
	· Study about carato particulary resubert		
Expected or	itcome		
• At th	e end of this course, the students will ha	ve exposed to the fund	amentals of electri
circu	it theorem and the working of various el	ectrical machines.	
	Ected		
Text Books	Lstu.		
• V.K N	Iehta, Rohit Mehta. "Principles of Electri	ical Machines".S Chan	d Publishers
• 51 1	Inpal: A Textbook of Electrical Engine	ering Khanna Publish	ers Delhi
	the set of	Salaliatina Campana	lis, Denn
• H. Co	otton : Electrical Technology, wheeler F	ublishing Company	
	2014		

Course co	de Course Name	L-T-P - Credits	Int	Year of	
EE301	POWER GENERATION. TRANSMISSION AND	3-1-0-4		2016	
	PROTECTION	• I V I			
Prerequis	te : Nil		1		
Course O	ojectives				
	• To set a foundation on the fundamental concepts of Pow	er System	Gene	ration,	
	Transmission, Distribution and Protection.			<i>.</i>	
Syllabue	ADI ARISTIL ZAT	1 1 1			
Syllabus Power Generation-conventional-hydrothermal, nuclear - non conventional solar and wind-economics of power generation-Power factor Improvement-Power transmission -line parameters -resistance- inductance and capacitance- Transmission line modelling- classifications -short line, medium line, long line-transmission line as two port network-parameters- derivation -power flow through lines-Overhead lines-types of conductors-volume of conductors- Kelvin's law- Types of Towers-calculation of Sag and tension-Insulators- types -corona-underground cables-H V DC transmission-Flexible A C transmission-power Distribution system need for protection circuit breakers protective relevance of protection causes					
of over volt	ages -insulation coordination				
Expected	outcome .				
The studer	ts will be able to		1.	·1 .· 1	
1.	Know the basic aspects in the area of power generation, tra	Insmissior	i, distr	ibution and	
::	protection.	amatara	nd daa	ida unan tha	
11.	various protection schemes to be adopted in various cases	ameters, a	nu dec	the upon the	
Text Boo	ks:		-		
1. B	R. Gupta: "Power system Analysis and Design", Wheeler publish	ers			
2. J.	3. Gupta, "A course in Electrical Power", Kataria and sons, 2004.				
3. W	adhwa, "Electrical Power system", Wiley Eastern Ltd. 2005				
Reference	es:				
1. A.C	Chakrabarti, ML.Soni, P.V.Gupta, V.S.Bhatnagar, "A tex	t book c	of Pov	ver system	
En	gineering" Dhanpat Rai, 2000				
2. Gra	uner J.J, Stevenson W.D, "Power system Analysis", McGraw	Hill			
3. I.J.	Nagarath & D.P. Kothari, "Power System Engineering", TM	H Publica	tion,	NT A	
4. K.I	R Padiyar, FACIS Controllers for Iransmission and	Distribu	tion	New Age	
5 Sta	ernauonai, New Deini Vonson Ir, Elementa of Dower System Analysia, TMU				
$\begin{array}{c} 5. \mathbf{5te} \\ 6 \mathbf{5te} \end{array}$	venson JI. Elements of Power System Analysis, 11VH				
0. SU	Course Plan				
				Sem. Exam	
Module	Contents	H	ours	Marks	
	Introduction: Typical layout of Power system Network				
	Generation of Electric Power:				
	Overview of conventional (Hydro, Thermal and Nuclear) and				
I Nonconventional Sources (Solar and Wind) (Block Diagram 9 15%					
	and Brief Description Unly)	1			
Economics of Generation: Load factor, diversity factor, Load					
curve (Brief description only) Numerical Problems.					
	Power Transmission				

Transmission Line Parameters: Resistance, inductance and capacitance of $1-\Phi$, 2 wire lines-composite conductors

10

15%

Π
	(Devices ties Beauting 1)		
	(Derivation Required).		
	Inductance and capacitance of $3-\Phi$ lines. Symmetrical and		
	unsymmetrical spacing-transposition-double circuit lines-		
	bundled conductors (Derivation Required) Numerical		
	Droblame		
	Tioblems		
	Modelling of Transmission Lines: Classification of lines-short		
	lines-voltage regulation and efficiency-medium lines-nominal		
	T and Π configurations-ABCD constants- long lines- rigorous	. A.	
	solution-interpretation of long line equation-Ferranti effect		
	Typed nevyer lines nevyer flery through lines Design only	A. T.	
	Tuned power mies-power now through mies-basics only		
	FIRST INTERNAL EXAMINATION		
	Introduction of Overhead transmission and underground	Acres 6	15%
	transmission — — — —		
	Conductors -types of conductors -conner Aluminium and		
	ACSD conductors Volume of conductor required for various		
	ACSR conductors - volume of conductor required for various		
	systems of transmission-Choice of transmission voltage,		
	conductor size -Kelvin's law.		
	Mechanical Characteristics of transmission lines –		
	configuration Types of Towars Calculation of sag and tension	0	
	configuration-types of towers. Calculation of sag and tension-	9	
	supports at equal and unequal neights -effect of wind and ice-		
TTT	sag template		
111			
	Insulators -Different types -Voltage distribution grading and		
	string officionary of suspansion insulators. Corona disruptiva		
	sum concrete y of suspension insulators. Corona -disruptive		
	critical voltage -visual critical voltage -power loss due to		
	corona -Factors affecting corona - interference on		
	communication lines.		
	Underground Cables -types of cables -insulation resistance -		
	valtage strong grading of eables conscitutes of single core and	1.5	
	voltage suess -grading of cables -capacitance of single core and		
	3 -core cables -current rating.		
	HVDC Transmission: Comparison between AC &DC		15%
	Transmission ,Power flow equations and control, Types of DC		
	links		
	Elexible AC Transmission systems. Need and Benefits SCV		
	Configuration of $EC + TCR$ Series compensation	8	
IV	Configuration of TCC	0	
	Configuration of TCSC		
	Power distribution systems – Radial and Ring Main Systems -		
	DC and AC distribution: Types of distributors- bus bar		
	arrangement -Concentrated and Uniform loading -Methods of		
	solving distribution problems.		
	SECOND INTERNAL EXAMINATION		
	Need for nower system protection		20%
	Circuit brookars principle of operation formation of are		2070
	Circuit breakers – principle of operation- formation of arc-		
	Arc quenching theory- Restriking Voltage-Recovery voltage,		
V	RRRV (Derivation Required). Interruption of Capacitive		
	currents and current chopping (Brief Description Only).		
	Types of Circuit Breakers: Air blast CB – Oil CB – SF6 CB –		
	Vacuum CB – CB ratings.		

	Protective Relays- Zones of Protection, Essential Qualities- Classification of Relays -Electro mechanical, Static Relays, Microprocessor Based Relay.	12	
	Electromechanical Relays-Attracted Armature, Balanced Beam, Induction disc, Thermal Relays (Brief Description only) Static Relays-Merits and Demerits, Basic components, Comparison and duality of Amplitude and Phase comparators. Static overcurrent, Differential, Distance Relays, Directional Relay-(principle and Block diagram only) Microprocessor Based Relay-Block diagram and flow chart of Over current Relay, Numerical Relay(Basics Only)	\mathcal{N}	
VI	 Protection of alternator: Stator inter turn, Earth fault Protection and Differential protection Protection of transformers- Percentage Differential Protection-Buchholz Relay Protection of transmission lines-Differential Protection-carrier current protection Causes of over voltages – surges and traveling waves – voltage waves on loss less transmission lines, Bewley Lattice diagram. Protection against over voltages - Surge diverters - Insulation co-ordination 	8	20%

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course c	ode	Course Name	L-T-P - Credits	Year	of ction
EE302	2	ELECTROMAGNETICS	2-1-0-3	201	6
Prerequisi	ite: Nil				
Course O	hiecti	VAS			
Course O	• T	To develop a conceptual basis of electrosta	tics magnetostatics ele	etromag	netic
	• 1	vaves	ines, magnetostaties, en	Cuomagi	
	Т	To understand various engineering application	tions of electromagnetic	ne la	
Syllobus	-	o understand various engineering applica	ations of electromagnetic	.5	
Introductio	on to ve	actor calculus Electrostatics Electrical potent	ial energy density and the	ir annlicati	ions
Magneto st	tatics r	magnetic flux density scalar and vector poten	tial and its applications. Ti	me varvin	σ
electric and	d magn	etic fields. Electromagnetic waves	that and its applications, in	ine varyni	5
Expected	d outc	come .	Lange Charles		
The studen	nts will	be able to:	IIV		
i.	Anal	yze fields and potentials due to static charges			
ii.	Expl	ain the physical meaning of the differential ed	juations for electrostatic a	nd magneti	c fields
iii.	Unde	erstand how materials are affected by electri	c and magnetic fields	U	
iv.	Unde	erstand the relation between the fields under t	ime varying situations		
v.	Unde	erstand principles of propagation of uniform p	olane waves.		
vi.	Be a	ware of electromagnetic interference and con	npatibility		
Text Bo	ok:				
1. N	Jannapo	eni Narayana Rao, "Elements of Engineering	Electromagnetics", Prentic	e Hall Ind	ia
2. S	adiku I	M. N. O, <i>Elements of Electromag<mark>ne</mark>tics</i> , Oxfo	rd university Press, 2010		
Data Bo	ok (A	pproved for use in the examination):			
Referen	ces:				
1. C	Cheng I	D. K., Field and Wave Electromagnetic, Pears	on Education, 2013.		
2. E	Edminis	ster J. A., Electromagnetics, Schaum Outline	Series , Tata McGraw-Hill	l, 2006.	
3. G 2	Gangadl 2009.	har K. A. and P. M. Ramanathan , Electromag	netic field theory, Khann	a Publishe	ers,
4. H	layt W	. H. and J. A. Buck , Engineering Electromag	netics, 8/e, McGraw-Hill, 2	2012.	
5. Ir	nan U.	S. and A. S. Inan, Engineering Electromagnet	ics, Pearson Education, 20	010.	
6. Jo	ohn Kr	auss and Daniel A. Fleisch, Electromagnetics	with Applications, McGra	w-Hill, 5 th	edition
7. N	J urthy	T. V. S. A, Electromagnetic field, S. Chand L	.td, 2008.		
8. P	Premlet	B., Electromagnetic theory with applications,	Phasor Books, 2000.		
9. S	.C.Mal	hapatra and Sudipta Mahapatra, Principles of	Electromagnetics, McGrav	w-Hill, 201	.5
		Course Pla	n		
Module		Contents		Hours	Sem. Exam Marks
	STA	TIC ELECTRIC FIELDS: Introduction t	o Co-ordinate System –		
	Recta	angular – Cylindrical and Spherical Co- ordin	ate System – Gradient of		
Ι	a Sc	alar field, Divergence of a Vector field	and Curl of a Vector	6	15%
	field	- Their Physical interpretation. Diverge	ence Theorem, Stokes'		
	Theo	prem. Numerical problems	,		
	Coul	omb's Law, Electric field intensity. Fiel	d due to a line charge.		
	Shee	t Charge and Continuous Volume Charge	ge distribution. Electric		
тт	Flux	and Flux Density; Gauss's law and i	ts application. Electric		150/
11	Poter	ntial-The Potential Gradient. The	Electric dipole. The	8	13%
	Equi	potential surfaces. Capacitance - capaci	tance of co-axial cable,		
	two v	wire line. Poisson's and Laplace's equation	S		
	•	FIRST INTERNAL EXAN	IINATION	•	<u> </u>

III	STATIC MAGNETIC FIELD: Biot-Savart Law, Amperes Force Law.– Magnetic Field intensity due to a finite and infinite wire carrying a current–Magnetic field intensity on the axis of a circular and rectangular loop carrying a current –Magnetic vector potential, Magnetic flux Density and Ampere's circuital law and simple applications.	6	15%		
IV	ELECTRIC AND MAGNETIC FIELDS IN MATERIALSElectric Polarization-Nature of dielectric materials-Electrostatic energy and energy density-Boundary conditions for electric fields and magnetic fields-Conduction current and displacement current densities- continuity equation for current. Maxwell's Equation in Differential and integral form from Modified form of Ampere's circuital law, Faraday's Law and Gauss Law	8	15%		
	SECOND INTERNAL EXAMINATION				
V	TIME VARYING ELECTRIC AND MAGNETIC FIELDS:. Poynting Vector and Poynting Theorem – Power flow in a co-axial cable – Complex Average Poynting Vector. ELECTROMAGNETIC WAVES: Wave Equation from Maxwell's Equation – Uniform Plane Waves –Wave equation in Phasor form	7	20%		
VI	Plane waves propagation in loss less and lossy dielectric medium and conducting medium. Plane wave in good conductor, surface resistance, Skin depth, Intrinsic Impedance and Propagation Constant in all medium. Phase and group velocity. Transmission lines: waves in transmission line –solution for loss less lines –characteristic impedance – VSWR – impedance matching. Introduction to Electromagnetic interference and compatibility.	7	20%		
	END SEMESTER EXAM				

Estd

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

0		Course Name	L-T-P -	Yea	r of
Cour	rse		Credits	Introdu	uction
COO EE2		Lincon Control Systems	2102	201	16
EE3	003	Linear Control Systems	2-1-0-3	201	10
Prerequ	uisite: I	N11 •			
Course	Object	Ives:	huimuna au ala		al th a a my
•	and mod	lelling of dynamic systems	nniques on cla	ssical contr	ol theory
Syllabu Open loo error- sta analysis-	is : op-and o atic erro -Bode pl	closed loop control systems- Transfer function - Contr r coefficient- dynamic error coefficient-Stability Analy ot-polar plot-Nyquist stability criterion- Non-minimum	rol system cor ysis- Root locu phase system	nponents-S 1s- Frequen 1 - transport	teady stare cy domain ation lag.
Expecte	ed outc	ome.	V/ V		
The stud	lents wil	l have the ability to	\sim		
1.	deve	elop mathematical models of various systems.	1		
11.	anal	yse the stability aspects of linear time invariant systems	5.		
1) (1) (2) (3) (4)	Dorf F Nagara Nise N Ogata 1	R. C. and R. H. Bishop, Modern Control Systems, Pears th I. J. and Gopal M., Control System Engineering, Wil . S., Control Systems Engineering, 6/e, Wiley Eastern, K., Modern Control Engineering, Prentice Hall of India	on Education, ley Eastern, 20 2010. , New Delhi, 2	2011. 008. 2010.	
Refere	ences:				
 Gibson J. E., F. B. Tuteur and J. R. Ragazzini, Control System Components, Tata McGraw Hill, 2013 Gopal M., Control Systems Principles and Design, Tata McGraw Hill, 2008. Imthias Ahamed T P, <i>Control Systems</i>, Phasor Books, 2016 					
4) KI	ио в. с.	, Automatic Control Systems, Prentice Hall of India, Ne	ew Delm, 2002	Ζ.	
		Course Plan			G
Module	8	Contents		Hours	Sem. Exam Marks
Ι	Open system force reducti equation	loop-and closed loop control systems: Transfer fun is-Mechanical and Electromechanical systems – Forc current analogy - block diagram representation - b ion - signal flow graph - Mason's gain formula - on.	ction of LTI e voltage and lock diagram characteristic	8	15%
II	Contro gyrosc Time	I system components: DC and AC servo motors ope - stepper motor - Tacho generator. domain analysis of control systems: Transient and	steady state	6	15%
	respon step re	ses - time domain specifications - first and second ord sponses of first and second order systems.	ler systems -		
	<u> </u>	FIRST INTERNAL EXAMINATI	ON	1 1	
	Error a	analysis - steady state error analysis - static error coef	ficient of type	;	
III	0,1, 2 s Concej feedba	systems - Dynamic error coefficients. pt of stability: Time response for various pole location ck system - Routh's stability criterion	s - stability of	7	15%
IV	Root le loci - e	ocus - General rules for constructing Root loci – stabi	lity from root	7	15%
		SECOND INTERNAL EXAMINAT	TION	_,I	
V	Freque based	ency domain analysis: Frequency domain specification on Bode plot - Log magnitude vs. phase plot,	ons- Analysis	7	20%

VI	Polar plot- Nyquist stability criterion-Nichols chart - Non-minimum phase	7	20%
V I	system - transportation lag.	/	2070

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

	Course Name	L-T-P -Credits	Year of Intr	oduction
Course co		2104	201	r
EE304	Advanced Control Theory	3-1-0-4	2010)
Prerequis	Prerequisite: EE303 Linear control systems			
Course O	bjectives:	· · · ·	1 1 (1 (
• 10	provide a strong concept on the compen-	isator design and on a	dvanced contr	ol system
ana • To	arysis and design techniques	stame and nonlinear as	ntrol avatoma	
• 10	analyse the benaviour of discrete time sys	stems and nonlinear co	ntrol systems.	
Syllabus	API ARINI	KALA	NA	
Compensa	tor design-Frequency domain approach-	root locus method-Tu	ning of P PI	and PID
controller-	State space analysis of systems-state fee	dback controller desig	n-sampled da	ta control
systems-N	onlinear systems-describing function-phase	se plane-Lyapunov me	thod.	
Expected	outcome.			
On succes	sful completion, students will have the abi	lity to		
i.	design compensators using classical tech	niques.		
ii.	analyse both linear and nonlinear system	using state space meth	ods.	
iii.	analyse the stability of discrete system ar	nd nonlinear system.		
Text Boo	ok:	•		
1.	Hassan K Khalil, Nonlinear Systems, Pr	rentice - Hall Internation	onal (UK), 200)2.
2	Kuo B.C, Analysis and Synthesis of Sar	npled Data Systems, P	rentice Hall	
	Publications.			
3	Nagarath I. J. and Gopal M., Control Sy	stem Engineering, Wi	ley Eastern, 20	008.
4	Nise N. S., Control Systems Engineerin	g, 6/e, Wiley Eastern, 1	2010.	010
5. D (D	Ogata K., Modern Control Engineering,	Prentice Hall of India	, New Delhi, 2	2010.
Data Bo	ok (Approved for use in the examinatio	n):		
Reference	Ces:	ana Caringan Varlas	1005	
	City LE ED T (LD L	ems, Springer Verlag,	1995.	· T ·
2	C. Gibson J. E., F.B. Tuteur and J. R. F	Ragazzini, Control Sys	stem Compon	ents, Tata
	McGraw Hill, 2013			
3	6. Gopal M., Control Systems Principles	and Design, Tata McG	raw Hill, 2008	
4	. Jean-Jacques E. Slotine & Weiping L	i, Applied Nonlinear	Control, Pren	tice-Hall.,
	NJ, 1991.		/	
	Cours	e Plan		
			T	Sem.
Module	Contents		Hours	Exam Marks
	Types of controller- Feedforward-feed	back-cascade-P. PI a	nd	IVICI INS
-	PID. Compensator design: Realization	of compensators – la	ag	150/
I	lead and lag-lead -Design of compensato	r using bode plot.		15%
	Compensator design: Realization of co	mpensators – lag, lea	d	
II	and lag-lead. Design of compensator usi	ng rootlocus. Design o	of 7	15%
	P, PI and PID controller using Ziegler-N	ichols tuning method.		
	FIRST INTERNAL E	XAMINATION	•	
	State space analysis of systems: Introdu	uction to state concep	t -	
тт	state equation of linear continuous	time systems, mat	rix 7	150/
111	representation of state equations. Phase	e variable and canonic	cal '	1 J 70
	forms of state representation-controllab	le, observable, diagon	nal	

	and Iordan canonical forms- solution of time invariant				
	autonomous systems forced system-state transition matrix-				
	relationship between state equations and transfer function				
	Properties of state transition matrix-Computation of state				
	transition matrix using Laplace transform Cayley-Hamilton				
	method Conversion from canonical form to phase variable form				
	State feedback controller design: Controllability & observability				
	State feedback controller design. Controllability & observability.				
	State feed-back design via pole placement technique.				
IV	Sampled data control system: Pulse Transfer function-Stability of	7	15%		
	sampled data system -Routh Hurwitz criterion and Jury's test.	1			
	Introduction to state-space representation of sampled data				
	systems.				
	SECOND INTERNAL EXAMINATION	har -			
	Nonlinear systems: Introduction - characteristics of nonlinear				
	systems. Types of nonlinearities. Analysis through harmonic				
• 7	linearisation - Determination of describing function of	7 1	200/		
v	nonlinearities (relay, dead zone and saturation only) - application	/ nrs	20%		
	of describing function for stability analysis of autonomous				
	system with single nonlinearity.				
	Phase Plane Analysis: Concepts- Construction of phase				
	trajectories for nonlinear systems and linear systems with static				
VI	nonlinearities - Singular points – Classification of singular				
	points Definition of stability- asymptotic stability and instability	7 hrs	20%		
	Lianupov methods to stability of linear and poplinear continuous				
	time systems				
	END CEMECTED EXAM				
	END SEMESTER EXAM				

Estd

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de Course Name	L-T-P -Credits	Year Introdu	of ction
EE305	Power Electronics	3-0-0-3	201	6
Prerequis	ite: Nil			
Course O	bjectives			
• To	get an overview of different types of po	wer semiconductor device	es and their s	witching
cha	racteristics			
• To	study the operation and characteristics of	various types of power el	ectronic conv	verters
Syllabus :	API ARDU	KALAN	A	
Structure	and characteristics of various power	semiconductor devices -	- turn-on m	ethods -
controlled	rectifiers - inverters - AC voltage con	trollers – cycloconverters	s – DC chop	pers and
switching	regulators	UUICA	1	
Expected	outcome.	CITV (
The studer	ts who successfully complete this course	will be able to:		
i. Ch	oose appropriate power semiconductor d	evice in converter circuits	and develop	their
trig	ggering circuits.			
ii. An	alyze various types of power electronic c	onverters and apply differ	ent switchin	g
tec	hniques.			
iii. Se	lect appropriate power converter for spec	ific applications.		
iv. Int	erpret and use datasheets of power semic	onductor devices for desig	gn.	
Text Boo	k:			
	Muhammad H. Rashid, Power Electroni	cs Circuits, Devices and A	Applications,	Pearson
	Education			
Reference	es:			
1. N	Iohan N., T. M. Undeland and W. P <mark>. R</mark> ob	bins., Power Electronics	Converters,	
A	pplications & Design, Wiley-India			
2. K	Trein P. T., Elements of Power Electronic	s, Oxford University Pres	s, 1998.	
3. P	.S. Bimbhra, Power Electronics, Khanna	Publishers, New Delhi		
4. L	. Umanand, Power Electronics – Essentia	als & Applications, Wiley	-India	
5. S	ingh M. D. and K. B. Khanchandani,	Power Electronics, Tata	McGraw H	ill, New
Ľ	Delhi, 2008.			
	Cour	se Plan		
Module	Contents		Hours	Sem. Exam
	SCD Structure static share staristics 0	awitching (turn an P_ t		warks
	off) characteristics di/dt & du/dt proto	switching (turn-on & turn option turn on mothods.	1-	
	SCR - two transistor analogy - series	and parallel connection	of	
Ι	SCR - two transistor analogy - scries	and parallel connection (6	15%
	Structure and principle of operation of r	ower diode TRIAC GT		
	Power MOSFET & IGBT – Comparisor		,	
	Gate triggering circuits – R. RC. U	JJT triggering circuits -	-	
	natural and forced commutation (conce	pt only). Requirements of	2	
	isolation and synchronisation in gate	drive circuits- Opto and	L	
Π	pulse transformer based isolation.		8	15%
	Controlled rectifiers – half-wave contr	olled rectifier with R load		
	- 1-phase fully controlled bridge rectif	ier with R. RL and RLF		
	loads (continuous & discontinuous con	duction) – output voltage		

	equation – 1-phase half controlled bridge rectifier with R, RL and			
	RLE loads – displacement power factor – distortion factor.			
	FIRST INTERNAL EXAMINATION			
III	3-phase half-wave controlled rectifier with R load – 3-phase fully controlled & half-controlled converter with RLE load (continuous conduction, ripple free) – output voltage equation-waveforms for various triggering angles (no analysis) – 1-phase & 3-phase dual converter with & without circulating current – four-quadrant operation	7	15%	
IV	Inverters – voltage source inverters– 1-phase half-bridge & full bridge inverter with R & RL loads – THD in output voltage – 3- phase bridge inverter with R load – 120° & 180° conduction mode – current source inverters.	7	15%	
	SECOND INTERNAL EXAMINATION			
V	 Voltage control in inverters – Pulse Width Modulation – single pulse width, multiple pulse width & sine PWM – modulation index & frequency modulation ratio. AC voltage controllers (ACVC) – 1-phase full-wave ACVC with R, & RL loads – waveforms – RMS output voltage, input power factor with R load – sequence control (two stage) with R load 	7	20%	
VI	DC-DC converters – step down and step up choppers – single- quadrant, two-quadrant & four quadrant chopper – pulse width modulation & current limit control in dc-dc converters. Switching regulators – buck, boost & buck-boost - continuous conduction mode only – waveforms – design of filter inductance & capacitance	7	20%	
END SEMESTER EXAM				

Estd

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de Course Name	L-T-P Credit	- Y	Year of
EE306	POWER SYSTEM ANALYSIS	3-0-0-3	3	2016
Prerequisi	te: Nil			
Course Ol	ojectives			
•	To enable the students to analyse power systems under n	normal a	nd abnorn	nal
	conditions.			
•	To understand the need for load flow analysis and different	ent meth	ods	
•	To understand power system modeling	AA	Л	
•	To understand the need for stability studies and their ana	lysis		
Syllabus Per unit q	uantities - modeling of power system components - me	ethods o	of analyzin	ng faults in
Automatic	voltage control – Economic load dispatch - Unit commitm	ent - Po	wer system	n stahility -
Solution of	Swing equation - Methods of improving stability limits	ient 10	wei syster	ii stability
Expected	outcome .			
The studen	ts will be able to:			
i	Analyse power systems under normal and abnormal co	onditions	5.	
ii	Carry out load flow studies under normal and abnormal co	nditions		
Reference	es:			
1. Cot Sto	ton H. and H. Barber, Transmission & Distribution of Elect ughton, 1978.	trical En	ergy, 3/e,	Hodder and
2. Gu	ota B. R., <i>Power System Analysis and Design</i> , S. Chand, New	7 Delhi, 2	2006.	
3. Gu	ota J.B., Transmission & Distribution of Electrical Power, S.I.	K. Katari	ia & Sons,	2009.
4. Ha	li Saadat, Power System Analysis, 2/e, McGraw Hill, 2002.			
5. Ko	hari D. P. and I. J. Nagrath, Modern Power System Analysis,	2/e, TMI	H, 2009.	
6. Ku	ndur P., Power system Stability and Control, McGraw Hill, 19	99		
7. Sor Sor	ii, M.L., P. V. Gupta and U. S. Bhatnagar, <i>A Course in Electric</i> , New Delhi, 1984.	ctrical P	ower, Dha	anpat Rai &
8. Ste	venson W. D., Elements of Power System Analysis, 4/e, McGt	raw Hill.	1982.	
9 Un	pal S. L. and S. Rao, <i>Electrical Power Systems</i> , Khanna Publi	ishers 20	009	
10 Wa	dhwa C. L. Flectrical Power Systems, 33/e New Age Interne	ational 2	2004	
10. wa	adiwa C. L., Electrical Tower Systems, 55/C, New Age Interna	Strboo E	.004. Ilectuic De	wan Sustan
II. we	n Wiley & Sons 2012	Subac, E	lectric FO	wer system,
	Course Plan	-		
	course rian			Sem. Exam
Module	Contents		Hours	Marks
	Per unit quantities-single phase and three phase-selecti	ion of		
	base quantities -advantages of per unit system –changin	ng the	2	
Ι	base of per unit quantities-Simple problems.			
	modelling of power system components - single line diag	ram –		1.50/
	impedances and sequence networks of generators transfo	rmers	3	15%
	and transmission lines.			
	Methods of analyzing faults in symmetrical and unsymmetrical	etrical		
II	case- effects of faults - Power system faults - symmetry	etrical	0	
	faults - short circuit MVA - current limiting rea	ctors-	0	15%

	Unsymmetrical faults - single line to ground, line to line, double line to ground faults -consideration of prefault current- problems.		
	FIRST INTERNAL EXAMINATION		
III	Load flow studies – Introduction-types-network model formulation - formation of bus impedance and admittance matrix, Gauss-Siedel (two iterations), Newton-Raphson (Qualitative analysis only) and Fast Decoupled method (two iterations) - principle of DC load flow.	8	15%
IV	Automatic Generation Control: Load frequency control: single area and two area systems - Automatic voltage control.	6	15%
	SECOND INTERNAL EXAMINATION		
V	Economic Operation - Distribution of load between units within a plant - transmission loss as a function of plant generation - distribution of load between plants - Method of computing penalty factors and loss coefficients.	5	20%
	Unit commitment: Introduction — Constraints on unit commitments: Spinning reserve, Thermal unit constraints- Hydro constraints	2	
	Power system stability - steady state, dynamic and transient stability-power angle curve-steady state stability limit	3	
VI	Mechanics of angular motion-Swing equation – Solution of swing equation - Point by Point method - RK method - Equal area criterion application - Methods of improving stability limits.	5	20%
	END SEMESTED EXAM		

Est

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de Course Name	L-T-P - Credits	Year of Int	roduction		
EE307	SIGNAL AND SYSTEMS	3-0-0-3	20	16		
Prerequis	ite: Nil			-		
Course O	biectives					
•	To impart knowledge about the representation and	properties of	signal and s	vstems and		
	applications in engineering	ALA		5		
Syllabus:	THEFT	a stal	1111			
Classificat	tion of signals - Basic operations on signals- pr	roperties of	systems- C	onvolution-		
Laplace tr	ansform-applications-Fourier series and Fourier tr	ansforms- p	roperties- Di	screte time		
systems-sa	ampling- ZT-properties-applications- DFS-DFT-prop	perties-Basic	s of Nonline	ar systems		
Expected	Outcome:					
After the c	completion of the course student will be able to:					
i.	Represent various signals and systems					
ii.	Analyse the continuous time system with Laplace t	ransform				
iii.	Represent and analyse signals using Fourier represent	entation				
1V.	Analyse the discrete time system using ZT					
V.	Analyse the DT systems with DFS					
V1.	Acquire basic knowledge in nonlinear systems					
1 ext book	S: white S. & Maan D. V. Signals & Systems, John Will					
1. Ha	ykin S. & Veen B.V., Signals & Systems, John Wild	ey	a Tata MaG	row Lill		
2. Op	pelliterin A. V., Whisky A.S. & Nawad S.H., Signal	s and System	is, Tata McG			
J. 518	giais and Systems. I'J Nagratui- Tata McOraw IIII					
References:						
1. Bracewell R.N., Fourier Transform & Its Applications, McGraw Hill						
2. Fa	2. Farooq Husain, Signals and Systems, Umesh pub.					
3. Pa	3. Papoulis A., Fourier Integral & Its Applications, McGraw Hill					
4. Ia	4. Taylor F.H., Principles of Signals & Systems, McGraw Hill					
Course Dian						
				Som		
Modulo	Contents		Houng	Selli. Evom		
would	Contents		nours	Lann Marks		
	Introduction to signals and systems - Classification	of signals -	7	Widi Ko		
	Basic operations on signals – Elementary signals –	of signals	,			
	Concept of system - Properties of systems	- Stability.				
I	inevitability- time invariance- Linearity -Causality	– Memory-				
	Convolution- Impulse response- Representation	on of LTI				
	systems - Differential equation representations of L	TI systems		15%		
	Laplace transform analysis of systems - Relation	between the	7			
т	transfer function and differential equation -Ca	usality and				
11	stability - Inverse system - Determining the time	domain and				
	frequency response from poles and zeros			15%		
	FIRST INTERNAL EXAMINA	ATION				
III	Fourier representation of continuous time signa	uls –Fourier	7	15%		

	Series-Harmonic analysis of common signals-		
	Fourier transform - Existence – properties of FT- Energy		
	spectral density and power spectral density - Frequency		
	response of LTI systems -		
	Sampled data systems- Sampling process-sampling theorem-	7	15%
	signal re construction- Zero order and First order hold circuits-	A	
IV	Difference equation representations of LTI systems -	NA.	
	Discrete form of special functions- Discrete convolution and	UVI.	
	its properties	AT	
SECOND INTERNAL EXAMINATION			
	Z Transform - Region of convergence- Properties of the Z	7	20%
	transform –		
\mathbf{V}	Inverse ZT-methods		
	Z-transfer function- Analysis of difference equation of LTI		
	systems – Basic idea on Stability and causality conditions-		
	Fourier representation of discrete time signals - Discrete	7	20%
	Fourier series-properties- Frequency response of simple DT		
VI	systems		
	Basics of Non linear systems-types and properties		
	Introduction to random signals and processes (concepts only)		
END SEMESTER EXAM			

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de Course Name	L-T-P-Credits	Yea Introd	r of uction	
EE308	Electric Drives	3-0-0-3	20	16	
Prerequis	te: EE202 & EE205				
Course O	ojectives				
• 1	o provide fundamental knowledge in dynamics	and control of Electric Dr	rives.		
• T	o justify the selection of Drives for various app	lications.			
• 1	o familiarize the various semiconductor control	lled drives employing vari	ous motors.		
Syllabus	ADI ARIDI II	KALAN	A		
Fundamen	tals of dynamics and control of electric driv	ves- separately excited of	lc motor dr	ives using	
controlled	rectifiers - chopper controlled dc driv	es – ac voltage contro	ollers – th	ree phase	
induction	motor speed control – VSI and CSI fed ir	nduction motor drives -	- synchron	ous motor	
drives	I IN HIVED	CITV			
Expected	outcome.	SILY			
T	ne students will be able to select a driv	ve for a particular ap	plication.	They will	
familiarize	with the various control techniques empl	loyed for controlling di	rives with	ac and dc	
motors.					
Text book	S				
1. E	imal K. Bose "Modern power electronics and A	AC drives" Pearson Educa	tion, Asia 20	003	
2 . [ubey G. K. "Power semiconductor control of	drives" Prentice Hall, En	nglewood (liffs, New	
J	ersey, 1989				
Reference	es:	5 1 S 1			
1. De	van S.B., G. R. Slemon, A. Strauvhen, "Power	semiconductor drives", Jo	ohn Wiley a	nd sons	
2. Dr.	P. S. Bimbra "Power electronics", Khanna pub	lishers			
3. J. N	1. D. Murphy "Thyristor control of AC drives"				
4. N.	K. De, P. K. Sen "Electric drives" Prentice Hall	of India 2002			
5. Ne	Monan, Tore m Undeland, William P Robbins	s, "Power electronics conv	verters appli	cations and	
	ign", John Wiley and Sons.	lau Fastam I td. Nau Dall	.:		
0. Pll. 7 Vo	an S. K. A lifst course on electric drives, wie	iey Eastern Ltd, New Dell			
7. Ve	Shaphard L. N. Hullow and D. T. Liang "	aw fill Education, New L		l" Second	
o.w. Edi	tion Cambridge University Press 1905	rower Electronocs and II		, second	
Lu	tion, Cambridge University Fress, 1995.				
	Course	Plan		~	
Module	Contents		Hours	Sem. Exam Marks	
	Introduction to electric drives - Block diagram	n – advantages of electric			
	drives - Dynamics of motor load system, fur	ndamental equations, and			
Ι	types of load - classification of load torque, for	our quadrant operation of	7	15%	
	drives. Steady state stability. Introduction to	closed loop control of			
	drives.				
	DC motor drives- constant torque and co	nstant power operation,			
	separately excited dc motor drives using con-	ntrolled convortor drives			
	Three phase semi converter and fully controlly	ad converter drives. Dual			
II	converters, applications of dual converter for	or speed control of DC	7	/ 15%	
	motor. Closed loop control of separately exc	ited dc motor drive. DC			
	series motor drive for traction application.				
	FIRST INTERNAL EX	AMINATION			

III	Chopper controlled DC drives. Analysis of single quadrant chopper drives. Regenerative braking control. Two quadrant chopper drives. Four quadrant chopper drives. Cycloconverters for drive applications – different types – basic principle.	7	15%
IV	Three phase induction motor speed control. Using semiconductor devices. Stator voltage control – stator frequency control - Stator voltage and frequency control (v/f). Rotor chopper speed control - slip power recovery control schemes – sub synchronous and super synchronous speed variations.	7	15%
SECOND INTERNAL EXAMINATION			
V	Voltage source inverter fed induction motor drives, Current source inverter fed induction motor drives. Concept of space vector – Basic transformation in reference frame theory – field orientation principle.	7	20%
VI	Synchronous motor drives – introduction to v/f control. Permanent Magnet synchronous motor drives – different types – control requirements, converter circuits, modes of operation. Microcontroller based permanent magnet synchronous motor drives (schematic only).	7	20%
	END SEMESTER EXAM		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de Course Name	L-T-P Credit	- Inf	Year of	
EE309	Microprocessor and Embedded Systems	3-0-0-	<u>.3</u>	2016	
Prerequis	ite: Nil		•	-010	
Course O	biectives				
000000	• To provide a strong foundation about the principles, pro-	ogramm	ning and v	arious	
	applications of different microprocessors and microcon	trollers			
Syllabus:		-			
Internal a	rchitecture, instruction set, assembly language programm	ning, S	Sample p	rograms in	
assembly	language of 8085 and 8086; 8051 microcontroller- inter	nal arcl	hitecture,	addressing	
modes, ins	struction types, Introduction to 8051 C programming.	1			
Expected	Outcome:				
After the c	completion of the course the students will be able to:				
i.	Apply the fundamentals of assembly level program	ming o	of 8085	and 8086	
	microprocessors.				
11. :::	Work with standard microprocessor real time interfaces	11			
111.	Develop skill for writing C programs for 8051 microcontro	ller			
1V.	Design interoprocessors/interocontrollers-based systems.				
Text book	is:				
1.	Douglas V. Hall, Microprocessors and Interfacing, Tata M	c <mark>Gr</mark> aw l	Hill, Educ	cation, New	
	Delhi, Third Edition.				
2.	Mathur A., Introduction to Microprocessors, Tata McGraw	Hill, N	lew Delhi,	, 1992.	
3.	Mohamed Ali Mazidi, Janice Gillispie Mazidi," The	8051	microcon	troller and	
	embedded systems using Assembly and C", 2/e, Pearson ec	lucation	n /PHI		
4.	Rafiquzzaman, Microprocessor Theory and Application, Pl	HI Lear	ning, Firs	t Edition.	
5.	Ramesh Gaonkar, Microprocessor, Architecture, Progr	amming	g and A	pplications,	
6	Penram International Publishing; Sixth edition, 2014.				
6.	Ray Ajoy and Burchandi, Advanced Microprocessor & Peripherals, Tata McGraw Hill,				
7	Education, New Delni, Second Edition.				
/.	Pearson education	control	lier, rou	un Eannon,	
	Course Plan				
	Course Han			Som	
Module	Contents		Hours	Exam	
mouule	2014		liouis	Marks	
	Internal architecture of 8085 microprocessor –Instruction	set -			
	Addressing modes – Classification of instructions. Assen	nbly			
Ι	language programming -standard programs in assen	nbly	7	15%	
	language – code conversion, sorting – binary and B	CĎ			
	arithmetic.				
	Stack and Subroutines - CALL and RETURN instruction	ns –			
п	Delay subroutines. Timing and control - Machine cyc	eles,	7	15%	
11	instruction cycle and T states - fetch and execute cycle	es –	/	1,5 70	
	Timing diagram for instructions.				

	FIRST INTERNAL EXAMINATION		
III	IO and memory interfacing – Address decoding– interrupt structure of 8085. I/O ports- Programmable peripheral interface PPI 8255 - Modes of operation. Interfacing of LEDs, ADC and DAC with 8085	7	15%
IV	Internal Architecture of 8086 – Segment Registers - Instruction Pointer – Flag Register – Index Registers - Stack Pointer Register. Segmentation and Pipe lining, Minimum and maximum modes of operation of 8086. Addressing modes	7	15%
	SECOND INTERNAL EXAMINATION		
V	Assembler and assembler directives –Instruction set of 8086, Assembly language programming, Simple programs- Addition of 8 bit binary and decimal numbers, Subtraction of 2 decimal numbers, Addition and subtraction of two 16 bit numbers, Multiplication and division of 8 bit numbers, Sorting of a series of 8 bit numbers, Code conversion-BCD to Binary, Binary to BCD.	7	20%
VI	Intel 8051 Microcontroller, Internal Architecture - I/O port structure, memory organisation, general purpose RAM, Bit addressable RAM, register banks, special function registers; Instruction set summary-addressing modes, instruction types, Introduction to 8051 C programming-pulse wave generation, buzzer interface.	7	20%
	END SEMESTER EXAM		•

Estd.

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course c	ode	Course Name	L-T- Cred	P-	Year of Introduction
EE312	2	Electrical and Electronics Engineering	3-0-0)-3	2016
Prerequis	ite : l	Nil			
Course O	bjecti	ive			
• To	give	exposure to the working of Electrical Machines that fu	inction	as prin	me movers in
ind	lustria	ll systems/machine-tools.	A	N.A	
• To	make	e aware on factors affecting the choice of motor for a gi	ven ap	plication	on
• To	intro	duce power electronics which form the essential part of	mode	rn driv	es
Syllabus					
1 ransform	lers, II	nduction motors, Direct current machines, Control syste	em mo	tors, Fa	actors
Exported	ne cho	ome	-		
The studer	ote wi	ll be able to			
i kno	ow ah	out electrical machines that form part of various indust	rial sv	stems	
ii. uno	dersta	nd the working of electric machine driven industrial s	vstem	s and r	nachine tools
ina	a bette	er way.	J		
Text Book	K:				
Hu	ighes,	Edward, et al. "Hughes electrical and electronic technology	ology'	'. Pears	son
edu	ucatio	n, 2008.			
Reference	es:				
		"harles A "Electric muchines" CBC mass 2006			
1. Gr	OSS, C thougt	hill locarb "Power electronics principles and application	tions"	Toto N	AcCrow Hill
Z. VII	mayai	nn, Joseph. <i>Fower electronics principles and applicat</i>	ions .	T ata N	
2 Ve	nkata	ratnam K "Special electrical machines" Universities	Press	2009	
4 . Mo	ohan.	Ned. and Tore M. Undeland. "Power electronics: conv	erters.	applic	ations. and
des	sign".	John Wiley & Sons, 2007.	,		
5. Gu	ıru, Bl	hag S., and Hüseyin R. Hiziroglu. "Electric machinery	and tre	ansform	ners",
Ox	Oxford University Press, 2001.				
	-	Course Plan			
		Estd.			End Sem.
Module		Contents		Hours	exam
					marks
	Tron	oformore Operating principle ideal and prov	otical		
	trans	formers EME equation No load phasor diag	ram		
	equi	valent circuit phasor diagram of a transformer on	load		
Ι	App	roximate equivalent circuit of transformer and	its	9	15%
	sim	blification. Voltage regulation. efficiency, condition	for		
	max	imum efficiency, transformer tests.	_		
	Thre	e phase Induction motors- principle of action, frequen	cy of		
	roto	emf and current. Factors determining the torque. To	rque-	-	
Ш	slip	curve, comparison of slip ring and cage rotors.		6	15%
	Sing	the phase induction motors-capacitor run induction m	lotor,		
	spiit	First Internal From			
		rirst Internal Exam			

III	Direct current machines-general arrangement of a dc machine, calculation of e.m.f. generated in an armature winding, armature reaction, commutation. Armature and field connections. A dc machine as generator or motor. Speed of a motor, speed characteristics of shunt, series and compound motors. Torque characteristics of shunt, series and compound motors.	8	15%	
IV	Control system motors-Motors for regulators, RPC system requirements, Geneva cam, stepper motor, variable reluctance motor, hybrid stepping motor, drive circuits.	6	15%	
Second Internal Exam				
V	Motor selection-Factors affecting the selection motors-speed, power rating and duty cycles, load torques. The motor and its environment.	4	20%	
VI	Power electronics- introduction to power electronics, thyristor circuits, limitations to thyristor operation, thyristors in practice, The fully controlled a.c./d.c. converter, ac/dc inversion. Switching devices in inverters.	9	20%	
	End Semester Exam			

Question Paper Pattern

Maximum marks: 100

Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course coo	le Course Name	L-T-P - Credits	Year of Introduction
EE331	Digital Circuits and Embedded Systems Lab	0-0-3-1	2016
Prerequisit	te: EE309 Microprocessor and embedded systems		
Course Ob	jectives		
• To i	mpart practical experience in the design and setup of digit	al circuits and	l embedded
syst	ems.	A & 4	
List of Exe	rcises/Experiments : (Out of 18 experiments listed, 12 ex	periments are	e mandatory.)
	THE THEOL WILL	I VI VI	
DIGITAL	CIRCUITS EXPERIMENTS : (at least 7 experiments ar	e mandatory)	
1. R	Realisation of SOP & POS functions after K map reduction		
2. H	Ialf adder & Full adder realization using NAND gates	r	
3. 4	-bit adder/subtractor & BCD adder using IC 7483		
4. B	CD to decimal decoder and BCD to 7-segment decoder & displ	lay	
5. S	tudy of multiplexer IC and Realization of combinational circuit	s using multip	lexers.
6. S	tudy of counter ICs (7490, 7493)		
7. E	Design of synchronous up, down & modulo N counters		
8. S	tudy of shift register IC 7495, ring counter and Johnsons counter	er	
9. V	(HDL implementation of full adder, 4 bit magnitude comparator	r	
EMBEDDE	D SYSTEM EXPERIMENTS: (Out of first six, any two exp	eriments usin	g 8085 and anv
two using 80	186. Out of the last 3 experiments, any two experiments using	ng 8051 or any	v other open
source hard	ware platforms like PIC. Arduino, MSP430, ARM etc) (at 1	east 5 experim	ents are
mandatory)		I I I I I I	
1.	Data transfer instructions using different addressing modes and	block transfer.	
2.	Arithmetic operations in binary and BCD-addition, subtraction.	multiplication	and division
3.	Logical instructions- sorting of arrays in ascending and descend	ing order	
4	Binary to BCD conversion and vice versa		
5	Interfacing D/A converter- generation of simple waveforms-tria	ngular wave r	amn etc
6	Interfacing A/D converter	ingului wuve, i	
7	Square wave generation		
8	ED and I CD display interfacing		
9	Motor control		
2.			
Expected o	utcome.		
The student	s will be able to		
i. (design, setup and analyse various digital circuits.		

ii. design an embedded system for a particular application

Course code	Course Name	L-T-P - Credits	Year of Introduction
EE332	Systems and Control laboratory	0-0-3-1	2016
Prerequisite:	EE303 Linear control systems		
Course Obje	tives		
To dev	velop mathematical models for electrical systems,	analyse the s	ystems and
impler	nent compensators for systems based on system	performance.	
List of Exper	iments:	-	
1. Predete	rmination and verification of frequency response char	acteristics of I	Lag and Lead networks.
2. Transfe	er Function of AC and DC servomotors	1LAI	V1
3. Step an	d frequency response of R-L-C circuit	ICA	1
4. Study of	of P, PI and PID controllers. Response analysis of a ty	pical system w	ith different controllers,
using p	rocess control simulator.	1. 1. 1	And a
5. Study of	of performance characteristics and response analysis o	f a typical tem	perature/ Flow/ Level
control	system.		
6. MATL	AB: Use of control system Tool box for the Time don	nain and freque	ency domain methods of
system	analysis and design		
7. SIMUI	INK: Simulation and control of real time systems using	ng SIMULINK	
8. Compe	nsator design using Bode plot with MATLAB control	system Tool b	OX
9. Simple	experiments using Programmable Logic Controller-	Realization of A	AND, OR logic,
concep	t of latching, experiments with timers and counters- u	Ising ladder dia	igrams
10. Study of	of various types of synchros (TX, TR & TDX). Charac	teristics of trai	nsmitter, data
transm	ssion using TX-T R pair. Effect of TDX in data transi	mission.	
11. Realiza	tion of Lag & lead compensator using active compone	ents	
End exemination	on shall be based on design of a controller for the	rivon evetom	
Course Outer	on shan be based on design of a controller for the s	given system	
Course Outco	me:		
After successf	ul completion of this course, students will be able	e to:	
1. Develo	op mathematical models for servomotors and othe	er electrical sy	vstems
2. Perfor	mance analysis of different process control system	ms	

- Performance analysis of different types of controllers
 Use MATLAB and SIMULINK to design and analyze simple systems and compensators

Course code	Course Name	L-T-P - Credits	Year of Introduction
EE333	Electrical Machines Lab II	0-0-3-1	2016
Prerequisite: E	E202 Synchronous and induction machines		
Course Object	ives		
 To gi 	ve hands on experience in testing Alternators, Three phase and	l Single phas	e Induction
Moto	rs and induction generators		
List of Exercises	/Experiments:	AN	1
1. Regulation of	alternator by direct loading	- A 1	
a) Determi	ne the regulation of three phase alternator	A	
b) Plot the	regulation vs load curve	7	
2. Regulation of	three phase alternator by emf and mmf methods		
Objectives:	· UTATYLINDIT		
Predeterm	ne the regulation of alternator by emf and mmf method		
3. Regulation of	alternator by Potier and ASA methods		
Objectives:			
a) Synchro	nize the alternator by dark lamp method		
b) Plot ZP	F characteristics and determine armature reactance mmf and p	otier reactand	ce
d) Predeter	mine the regulation by ASA method		
4 Regulation of	alternator by Potier method using inductive load		
Objectives:			
a) Plot ZP	F characteristics using a variable inductive load		
b) Predetri	nine the regulation by ZPF method		
5. Regulation of	salient pole alternator using two reaction theory		
Objectives:			
a) Determi	ne the direct and quadrature axis reactances.		
b) Predeter	the regulation of alternator		
Ohiectives	crive power control in grid connected alternators		
a) Synchro	nize the alternator by bright lamp method		
b) Control	the active and reactive power		
c) Plot the	v-curve and inverted v curve for generator operation		
7. Study of induc	tion motor starters ESLO.		
Objectives:			
a) Start an	induction motor using star delta starter and determine the start	ting current	
b) Plot the 8 Variation of st	aynamic characteristic during in starting	•0	
Ohiectives	atting torque with rotor resistance in sup-ring induction motor	3	
a) Plot the	variation of starting torque against rotor resistance in a three r	hase slip rin	g induction
motor		······ F	6
b) Find the	external rotor resistance for which maximum starting torque	is obtained.	
9. Speed control	of slip ring induction motor by varying rotor resistance		
Objectives:			
a) Run the	slip ring induction motor with constant load torque		
b) Plot the	variation of speed against change in rotor resistance		
Objectives	mee phase square cage induction motor		
a) Start the	motor using star delta starter		
b) Plot eff	ciency, line current and power factor against output power		
11. Load test on	hree slip ring induction motor		
Objectives:			
a) Start the	motor using auto transformer or rotor resistance starter		

b) Plot efficiency, line current and power factor against output power
12. No load and block rotor test on three phase induction motor
Objectives:
a) Predetermination of performance characteristics from circle diagram
b) Determination of equivalent circuit
13. Performance characteristics of pole changing induction motor
Objectives:
a) Run the motor in two different pole combinations (example 4 pole and 8 pole)
b) Determine the performance in the two cases and compare
14. V curve of a synchronous motor
Objectives:
a) Run the motor in two different load conditions
b) Determine v-curve for each load condition
15. Performance characteristics of induction generator
Objective:
a) Run the induction generator with a dc motor prime mover.
c) Plot the performance characteristics of the generator
16. Equivalent circuit of single phase induction motor
Objectives:
a) Conduct no load and blocked tor test on the motor
c) Find the equivalent circuit
17. Electrical braking of slip ring induction motor
Objectives:
a) Dynamic braking
b) Plot the speed variations at different conditions
18. Separation of hysteresis loss in a three phase slip ring induction motor
Objective:
Determine the hysteresis loss in a slip ring induction motor
Out of the above experiments, minimum twelve experiments should be done.
Expected outcome:
• After the successful completion of the course, the students will be able to test and validate DC
generators DC motors and transformers
Soloradolo, 20 motoro and transformero
Text Book:

- 1. Bimbra P. S., *Electrical Machinery*, 7/e, Khanna Publishers, 2011.
- 2. Theraja B. L., *A Textbook of Electrical Technology*, S. Chand & Company, New Delhi, 2008.

Course code		Course Name	L-T-P - Credits	Year of Introduction		
EE334		Power Electronics and Drives Lab	2016			
Prere	Prerequisite: EE305 Power electronics					
Cours	e Object	tives				
•	Impart	practical knowledge for the design an	d setup of different	power electronic		
	convert	ers and its application for motor control	ZATANA			
•	Simulat	the various power electronics converters	AC drives and DC driv	ves.		
List of	f Exercis	es/Experiments: (12 experiments are mat	ndatory)	•51		
1150 0		is Experiments. (12 experiments are mar				
HARI	DWARE	EXPERIMENTS:	ITV			
1.	Static ch	aracteristics of SCR	I I Y			
	Aim: De	etermine latching current, holding current and s	tatic characteristics of SC	R		
2.	R and R	C firing circuits				
	Aim: De	esign and set up R and RC firing circuits and ob	oserve waveforms across l	oad resistance and		
	SCR					
3.	UJT Trig	gger circuit with Single phase controlled Rectif	lier	1		
	A1m: De	esign & Set up UJT Triggering Circuit and obse	erve waveforms across loa	id resistance, SCR,		
4	capacita	nce and pulse transformer output.				
4.	Aim: De	esign and set-up line synchronized Ramp Trigg	er and Digital Trigger circ	uits and observe		
	the wave	eforms	er and Digital Higger end	and observe		
5.	Static ch	paracteristics of MOSFET				
01	Aim: Plo	ot the characteristics of a Power MOSFET				
6.	AC Volt	age Controller using TRIAC				
	Aim: Se	t a 1-phase AC voltage controller & observe w	aveforms across load resis	stance, TRIAC and		
	capacito	r for different firing angles				
7.	Single P	hase fully Controlled SCR Bridge circuit				
0	Aim: Se	t up a 1-phase full converter with RL load & w	ith and without freewheel	ing diode		
8.	Single-p	hase half bridge/full bridge inverter using pow	er MOSFET/IGBT	4		
	Aim: De	esign and set up a single phase half-bridge/full-	bridge inverter and observ	e the waveforms		
0	Single n	has sine PWM inverter with I C filter				
).	Aim [•] De	esign and set up a single phase sine PWM inver	ter with LC filter using m	icrocontroller		
10	. Chopper	· controlled DC motor				
	Aim: Co	ontrol the speed of a DC motor using a step-dov	wn chopper			
11	. Speed co	ontrol of 3-phase induction motor				
	Aim: Co	ontrol the speed of 3-phase induction motor using	ng V/f control			
12	. IGBT ba	ased three phase PWM Inverter				
	Aim: Se	t up a 3-phase PWM Inverter with RL load and	observe the waveforms			
13	. Closed I	Loop Control of Single Phase Fully Controlled	Rectifier			
	Aim: De	esign and set-up a closed loop control circuit fo	r a lph Fully Controlled F	Rectifier such that		
	n keeps	the toat voltage constant mespective of the loa	au variations (use K load)			
SIMU	SIMULATION EXPERIMENTS:					
14	. Simulati	on of 1-phase fully-controlled and half-contro	lled rectifier fed separatel	y excited DC		
	motor		•	-		
	Aim: Si	nulate 1-phase fully-controlled and half-control	olled rectifier fed SEDC m	otor and observe		
	the spee	d, torque, armature current, armature voltage, s	ource current waveforms	and find the THD		
	in source	e current and input power factor.				

- 15. Simulation of closed loop speed control of DC motor with different control schemes (PID, hysteresis current control, Fuzzy, ANFIS etc)
- 16. Simulation of open loop or closed loop speed control of 3-phase induction motor using V/f control and using sine PWM
- 17. Design and simulation of buck, boost and buck-boost converters
- 18. Simulation of Dual Converter 4 quadrant operation separately excited DC motor
- 19. Simulation of Regenerative Braking Bidirectional Power Transfer
- 20. Simulation of Switched Mode Rectifiers keeping load voltage constant irrespective of line and load variations closed loop circuit simulation

Minimum of EIGHT hardware experiments and FOUR simulation experiments from the above list are to be done

Expected outcome.

• Students will be able to design, setup and analyse various power electronic converters and apply these converters for the implementation of various motor control applications.

Text Book:

- 1) L. Umanand, Power Electronics Essentials & Applications, Wiley-India
- 2) Mohan, Undeland, Robbins, Power Electronics, Converters, Applications & Design, Wiley-India
- 3) Muhammad H. Rashid, Power Electronics Circuits, Devices and Applications, Pearson Education

Course	Course Name	L-T-P-	Year of			
	Electrical and Electronics Engineering Lab					
EE330 Dronoquisito	• EE212 Electrical and electronics engineering Lab	0-0-3-1	2010			
Course Obio						
Course Obje	cuve		· 1 1			
• Io pr	ovide necessary practical knowledge related to the th	eory of elect	rical machines			
such a	is transformers, induction machines and de machines.	LAIV	1			
• To stu	dy the characteristics of normal diodes and Zener diode	S				
• To fa	miliarize with various instruments like CRO, multi-n	neters etc. us	ed to measure			
electr	cal quantities.	Q7 11				
To do	a simple project which can be performed in groups is g	ven.				
	UNIVERDE	1				
List of Expe	riments					
1 0 1						
I. Single	phase transformer – load test	<u>.</u>				
2. Single	phase transformer-OC and SC test- determination	of approxim	ate equivalent			
circui	s-pre-determination of efficiency and regulation.	6				
3. Starti	ng of three phase induction motor using different kinds	of starters (sq	uirrel cage and			
slip ri	ng)-observation of currents and voltages.					
4. Load	test on three phase squirrel cage /slip ring induction mot	ors.				
5. DC s	nunt generator magnetization characteristics plot (det	ermination c	f critical field			
resista	ince and critical speed).					
6. DC sh	unt generator load test.	D.				
7. DC cc	ompound generator load test (cumulative and differentia	l).				
8. Obser	vation of diode characteristics on CRO.					
9. Zener	diode characteristics.	1.				
10. Proje	ct : The students can do a project related to designing	ng a timer us	sing IC 555 to			
under	stand the application of such timer ICs. The timer shou	d be able to	keep a light on			
for a g	given period. They can do the project in groups. Any of	her interestin	g project using			
IC 55.	b can also be tried.					
	Estd.	7				
	Expected outcome:					
The students	will be able to					
	nderstand the principles of electrical machines	IDC				
11. Do	characteristic tests on transformers, induction motors a	ind DC gener	ators			
111. Vi	sualise diode characteristics on CRO					
iv. Ex	secute simple projects using IC 555					

Course	Course name	L-T-P-	Year of	
code		Credits	Introduction	
EE337	ELECTRICAL ENGINEERING LAB	0-0-3-1	2016	
Prerequisit	e: EE216 Electrical Engineering			
Course obj		1.4	C	
• 10 s	tudy the performance characteristics of dc and ac machin	nes and tra	nsformers.	
Experime	nts			
1. Plo	t open circuit characteristics of DC shunt generator for ra	ited speed	- Predetermine	
0.0	C.C. for other speeds - Determine critical field resistance	for differe	nt speeds	
2. Loa	d test on DC shunt generator - Plot external characteristi	cs - Dedu	ce internal	
Cha	aracteristics	1		
3. Loa	d test on DC series motor - Plot the performance charact	eristics		
4. OC	and SC tests on single phase transformer - Determine eq	luivalent c	ircuit	
para	ameters - Predetermine efficiency and regulation at vario	us loads a	nd different	
pov	ver factors - verify for unity power factor with a load tes	t		
5. Loa	d test on 3 phase cage induction motor - Plot performance	ce curves		
6. Res	istance measurement using (a) Wheatstone's bridge (b)	Kelvin's d	ouble bridge	
7. Me	asurement of self-inductance, mutual inductance and cou	pling coef	ficient of	
(a)	Transformer windings (b) air cored coil			
8. Pov	ver measurement in 3 phase circuit - Two wattmeter meth	nod		
9. Ext	ension of ranges of ammeter and voltmeter using shunt a	nd series 1	resistances	
10. Calibration of Single phase energy meter by direct loading				
Expected outcomes				
• At the end of the semester students are expected to be familiar with the working and characteristics of DC and AC machines etc.				

Course code	Course Name:	L-T-P-Credits	Year of Introduction
EE339	ELECTRICAL ENGINEERING LAB	0-0-3-1	2016
Prerequisi	te : EE214 Electrical technology and instrum	entation	
Course Ob	jectives:		
•	Introduction to devices commonly used in carry	ing out experiments per	rtaining to the
	domain of electrical engineering.		
•	Familiarization in setting up of experiments in a	a laboratory environmen	nt.
• '	To carryout load test on various electrical mach	inery and evaluate their	performance.
•	Provide an environment to correlate theoretical	knowledge gained in th	e class room
	with the physical world.	JICAL	
List of Exe	rcises/ Experiments (Minimum 12 experiment	ts/exercises are mandat	ory)
1 04		A A	
I. Stuc	in or 3-point and 4-point starters for D.C machin	nes	
<u>Equ</u>	<u>ipmeni:</u> 5 Poini Siarier, 4 Poini Siarier.		
2 000	C of self excited D C machines – critical resist	ances of various speeds	Voltage built-
	with a given field circuit resistance. Critical spee	ed for a given field circ	uit resistance.
Eau	ipment: D.C Motor-Generator set. Ammeter. Vo	oltmeter. Rheostat.	
		5.0	
3. OC	C of separately excited D.C machines.		
<u>Equ</u>	<mark>ipment:</mark> D.C Motor-Generator Set, <mark>A</mark> mmeter, V	oltmeter, Rheostat.	
4. Loa	d test on shunt generator – deduce external, inte	rnal and armature chara	acteristics.
<u>Equ</u>	<u>ipment:</u> D.C Shunt Generator- Motor Set, An	nmeter, Voltmeter, Rhe	eostat, Loading
Rhe	ostat.		
5. Loa	d test on compound generator.		
<u>Equ</u>	<u>ipment:</u> Compound Generator, Ammeter, Voltm	eter, Rheostat, Loading	g Rheostat.
6 Sur	nhuma'a tast an D.C. mashinas		
0. Swi Equ	inment: D C Shunt Motor Ammeter Voltmeter	Rheostat	
<u>Lqu</u>	ipmeni. D.C. Shuni Motor, Annacer, Voluncier,	Micosiai.	
7. Bral	ke test on D.C shunt motors and determination of	of characteristics.	
Eau	ipment: D.C Shunt Motor. Ammeter. Voltmeter.	Rheostat.	
	· · · · · · · · · · · · · · · · · · ·		
8. Bral	ke test on D.C series motors and determination of	of characteristics.	
Equ	ipment: D.C Series Motor, Ammeter, Voltmeter		
9. Bral	ke test on D.C compound motors and determina	tion of characteristics.	
<u>Equ</u>	ipment: D.C Compound Motor, Ammeter, Voltn	neter, Rheostat.	
10.00	and SC tasts on single phase transformers	adoutation of and	Component and
10. U.U	and S.C tests on single phase transformers	- calculation of peri	ormance using

equivalent circuit – efficiency, regulation at unity, lagging and leading power factors. *Equipment: Single Phase Transformer, Ammeter, Voltmeter, Wattmeter, Autotransformer.*

- 11. Load test on single phase transformers. <u>Equipment:</u> Single Phase Transformer Ammeter, Voltmeter, Wattmeter, Loading Rheostat
- 12. Alternator regulation by emf and mmf methods. <u>Equipment:</u> Alternator Set, Ammeter, Voltmeter, Rheostat.
- 13. Study of starters for three phase induction motors. <u>Equipment:</u> Star Delta Starter, TPDT switch, Autotransformer.
- 14. Load tests on three phase squirrel cage induction motors. <u>Equipment:</u> 3 Phase Squirrel Cage Induction Motor, Ammeter, Voltmeter, Wattmeter.
- 15. Load tests on three phase slip ring induction motors. <u>Equipment:</u> 3 Phase Slip Ring Induction Motor, Ammeter, Voltmeter, Wattmeter.
- 16. Load tests on single phase induction motors. <u>Equipment:</u> Single Phase Induction Motor, Ammeter, Voltmeter, Wattmeter.
- 17. Polarity, transformation ratio of single phase transformer. <u>Equipment:</u> Single Phase Transformer, Ammeter, Voltmeter.
- 18. Equivalent circuit of three phase squirrel cage induction motor. <u>Equipment:</u> 3 Phase Squirrel Cage Induction Motor, Ammeter, Voltmeter, Wattmeter.

Course Outcome:

Upon successful completion of the course, the student will be:

- i. Familiar with the arrangement and conduct of experiments in an electrical laboratory environment.
- ii. Able to note down relevant readings and perform calculations while an electrical experiment is in progress.
- iii. Able to comprehend the factors responsible for variation between theoretical and experimental results.

Text Book:

• J. B. Gupta; Theory and Performance of Electrical Machines; S.K. Kataria & Sons.

Course	e Course Name	L-T-P -	Y	ear of		
code		Credits	Intr	oduction		
EE361	Object Oriented Programming	3-0-0-3		2016		
Prerequis	Prerequisite: EE207 Computer programming					
Course O	Dbjectives					
	• To familiarize the student with the Object Oriented Pro	gramming	Concep	ts		
	• To give a fair idea about Programming in Java and its u	use as an Aj	pplicatio	on		
	development tool	A 8 4				
Syllabus	APLARDU KAL	AΜ				
Review of	of Object Oriented Concept, Components of Object of	oriented pr	ogramm	ing, File		
managem	ent concepts, Database programming, Application development	nent concep	ots			
Expecte	d outcome.	111		• . •		
• 1	The students will be able to develop simple application progr	ams using o	object of	riented		
C C	concepts and Java					
Text Bo	0ks: Des 6. Hensteren and Came Comell, "Come Jacob Values I.	II Franda		"		
	Lay S. Horsumann and Gary Cornell, Core Java. Volume 1 c	с II— гипца	imentais	,		
	Calson Education, 2006. Jerbert Schildt The Complete Reference Java? Fighth Edit	ion Tata M	Crow	L ;11		
Z. 1 Referen	ces:	1011, 1 ata 1V	icolaw	11111		
1 T	Construction of the second	es and Patte	rns Pea	rson		
F	Education.		1115, 1 00	10011		
2. K	K. Arnold and J. Gosling, "The JAVA programming languag	e". Pearson	Educat	ion.		
3. 1	Simothy Budd, "Understanding Object-oriented programmin	g with Java	", Pears	on		
E	Education. 3.	0	,	-		
	Course Plan					
				Sem.		
Module	Contents	H	Iours	Exam		
				Marks		
Т	Review of Object Oriented Concepts - Objects and cla	sses in	7			
-	Java – defining classes – methods – access specifiers			15%		
п	- static methods- constructors, Arrays - Strings -Packa	iges –	7			
	JavaDoc comments,			15%		
	FIRST INTERNAL EXAMINATION					
	Inheritance – class hierarchy – polymorphism – dynamic b	inding	7	15%		
III	– final keyword – abstract classes – the Object class – Refl	ection				
	– interfaces – object cloning – inner classes		_			
	Streams and Files - Use of Streams, Object Streams, Appl	et	7	15%		
IV	Basics-The Applet HTML Tags and Attributes, Multimedi	a, The				
	Applet Context, JAR Files.					
SECOND INTERNAL EXAMINATION						
	File Management. Multithreaded programming– Thread		7	20%		
X 7						
v priority- thread synchronization – Synchronized method -Inter						
v	properties – Creating a thread -Interrupting threads – Threa priority- thread synchronization – Synchronized method -I	d nter				
• 	properties – Creating a thread -Interrupting threads – Threa priority- thread synchronization – Synchronized method -I thread communication	d nter	7	2004		
V	properties – Creating a thread -Interrupting threads – Threa priority- thread synchronization – Synchronized method -I thread communication Database Programming -The Design of JDBC, The Structu	d nter ured	7	20%		
V VI	properties – Creating a thread -Interrupting threads – Threa priority- thread synchronization – Synchronized method -I thread communication Database Programming -The Design of JDBC, The Structu Query Language, JDBC Installation, Basic JDBC Program	d nter ured ming	7	20%		
V VI	 properties – Creating a thread -Interrupting threads – Thread priority- thread synchronization – Synchronized method -I thread communication Database Programming -The Design of JDBC, The Structure Query Language, JDBC Installation, Basic JDBC Program Concepts, Query Execution 	d nter ured ming	7	20%		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course	code	Course Name	L-T-P - Credits	Year o	f
EE36	2	Data Structures and Algorithms	3-0-0-3	2016	.1011
Prerequ	isite:	EE207 Computer programming			
Course	Obiec	tives			
	•	To introduce the fundamental concept of data	structures and to	o emphas	ize the
		importance of data structures in developing and in	nplementing effic	ient algor	rithms
		To impart knowledge about algorithm specification	n e	U	
Syllabus	,		AM		
Linear St	, tructu	res Tree Structures Applications of trees Balan	ced Search Trees	and Inde	xing
Graphs	. Sho	prtest-path algorithms . Applications of graphs .	Algorithm Des	sign . Als	zorithm
Analysis	, Dyn	amic programming		-8 ,2	
5	, J		V		
Expect	ed ou	tcome.	1		
The stu	dents	will be able to:			
i.	Des	scribe how arrays, records, linked structures, stac	ks, queues, trees	, and gra	phs are
::	rep	resented in memory and used by algorithms	lintradi atma atauna	ata alva	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11.	tree	scribe common applications for arrays, records, i	inked structures,	, stacks, (queues,
iii	Wr	ite programs that use arrays records linked stru	ctures stacks ou	ieues, fre	es. and
	gra	phs	etares, staens, q		es, and
iv.	Dei	monstrate different methods for traversing trees			
v.	Co	mpare alternative implementations of data structure	es with respect to	performa	ince
vi.	Coi	mpare and contrast the be <mark>n</mark> efits of dynam	ic and static	data str	uctures
	imp	blementations			
V11.	Des	scribe the concept of recursion, give examples of	f its use, describ	e how it	can be
Toyt B		biemented using a stack			
1 1 1	Rober	t Kruse Data Structures and program design in C	Pearson Educati	on Asia	
2.	Sama	nta.Classic Data Structures. PHI	, i cuison Luucun		
3.	Treml	bley & Sorenson, An introduction to Data Structur	es with application	ons:, McC	Graw
	Hill	Estd.	11	ŗ	
Referen	nces:				
1. Donald E Knuth, The Art of Computer Programming, Vol.1: Fundamental Algorithms,					
	Add1so	n-Wesley, 1997.		maan 100	5
2. L 3. N	angsa I Wirt	h. Algorithms + Data Structures & Programs: PH	$\log C \propto C + + 2 \operatorname{Pea}$	arson, 199	5
3. I 4 S	ahni 8	Wehta Fundamentals of Data Structures in C++	· Horowitz Gal	oottia Pul	า
5. Thomas Standish. Data structures in Java: Pearson Education Asia					
Course Plan					
					Sem.
Module		Contents		Hours	Exam Marks
	Line	ar Structures : Abstract data types(ADT). List AD	T. Arrav based		171AI K3
	impl	ementation, Linked list implementation, Curser	based linked		
т	lists,	Doubly linked lists, Applications of lists, Stack	k ADT, Queue	7	15%
	AD7	C, Circular queue implementation, Applications	of stacks and	/	1.5 70
	queu	les			
	1				1

II	Tree Structures : Need for nonlinear structures, Tree ADT, Tree traversals, Left child right sibling data structures for general trees, Binary tree ADT, Expression trees, Applications of trees, Binary search tree ADT	7	15%
	FIRST INTERNAL EXAMINATION		
III	Balanced Search Trees and Indexing : AVL trees, Binary heaps, B- trees, Hashing, Separate chaining, Open addressing, Linear probing	7	15%
IV	Graphs : Definitions, Topological sort, Breadth-first traversal, Shortest-path algorithms, Minimum spanning tree, Prim's and Kruskal's algorithms, Depth-first traversal, Bio connectivity, Euler circuits, Applications of graphs	7	15%
	SECOND INTERNAL EXAMINATION		
V	Algorithm Design: Greedy algorithm, Divide and conquer, Dynamic programming, Backtracking, Branch and bound, Randomized algorithms	7	20%
VI	Algorithm Analysis : Asymptotic notations, Recurrences, NP complete problems	7	20%
	END SEMESTER EXAM		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

2014

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course	e Course Name	L-T-P-	Year of		
Code EE262	Commuter Organization and Design		Introduction		
EE303	Computer Organization and Design	3-0-0-3	2016		
Prerequis					
Course O	bjectives	C 1' '4 1			
•	To lay the foundation for the study of hardware organizati	on of digital c	omputers.		
• C-llahara	To impart the knowledge on interplay between various but	laing blocks o	of computer		
Synabus Basia on	arational concents CDU structure Arithmetic Memor	w hiererchy	Input Outpu		
interfacing	g Performance analysis Design	y merarchy,	input Outpu		
Exporte	d outcome	AL			
	be students will gain general idea about the functional aspe	ets of each bu	uilding blocks		
• 1	a computer design		inding blocks		
Text Bo					
W	Stallings Computer Organization and Architecture: Desig	ning for Perfo	rmance 8 th		
Ed	Pearson Education India	ling for reno	innance, o		
Referen					
1. D	D. A. Patterson and J. L. Hennessy, Computer Organization	and Design, 4 ¹	^h Ed., Morgan		
K	Kaufmann, 2008.		,		
2. H	Iamacher, Vranesic & Zaky, Computer Organization, McGr	aw Hill			
3. H	Ieuring V. P. & Jordan H. F., Computer System Design & A	Architecture, A	ddison Wesel		
	Course Plan				
			Sem.		
Module	Conte <mark>n</mark> ts	H	ours Exam		
			Mark		
	Basic Structure of computers – functional units – I	Historical	7		
T	Perspective -Basic operational concepts – bus s	ructures,			
-	Measuring performance: evaluating, comparing and sum	marizing			
	performance		- 15%		
	Memory locations and addresses – memory opera	tions –	7		
11	instructions and instruction sequencing instruction sets	- RISC	1.50/		
	and CISC paradigms, Addressing modes		15%		
	FIRST INTERNAL EXAMINATION	1	7 1.50/		
	Computer arithmetic - Signed and unsigned numbers - Ad	aition	/ 15%		
III	and subtraction - Logical operations - Constructing an AL	U -			
	Multiplication and division – faster versions of multiplicat	ion-			
	The processory Duilding a data path Simple and my	ulti avala	6 150/		
IV	implementations Microprogramming Exceptions	uni-cycle	0 1370		
SECOND INTEDNAL EVAMINATION					
	Introduction to pipelining pipeline Hazards Memory hier	archy -	7 20%		
V	Caches - Cache performance - Virtual memory - Common	ucity -	/ 20/0		
•	framework for memory hierarchies				
	Input/output - I/O performance measures – I/O techniques	_	8 20%		
	interrupts polling DMA. Synchronous vs. Asynchronous	I/O·	2070		
VI	Controllers. Types and characteristics of I/O devices - Rus				
	Interfaces in I/O devices - Design of an I/O system	•••			
	FND SFMFSTFD FYAM				

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course o	code Course Name	L-T-P - Credits	y Intr	ear of coduction
EE36	4 Switched Mode Power Converters	3-0-0-3		2016
Prerequi	isite : Nil			
Course (Objectives			
• T	o study and analyze various types of switched mode dc- dc c	onverters, in	verters	and
re	esonant converters and its switching techniques.	A 6 4		
Syllabus	APLARDI KAL	AM		
DC-DC	convertors without isolation - switched mode power suppl	y - DC-DC	conve	rters with
isolation	- switched mode DC-AC converter - sine PWM and sp	ace vector]	PWM -	resonant
converter				
Expected	d outcome.			
The stude	nts will have			
i.	ability to analyze and design switched mode power converters			
11.	proper understanding about soft switching and its applications			
111.	deep knowledge in pulse width modulated techniques			
Text Bo	bok:			
1. M	Iohan, Undeland, Robbins, Power Electronics – Converters Applie	cation and De	esign, W	iley-India
2. N	Iuhammad H. Rashid, <i>Power Electronics – Circuits, Devic</i>	es and App	lication	s, Pearson
Doforor				
1 A	braham Pressman Switching Power supply Design McGraw Hill			
1, 1	Course Plan			
	Course Fian			Sem
Module	Contents	1	Hours	Exam Marks
	Switched Mode DC-to-DC Converter - buck converters – boost	Converter		
	- buck-boost converter - Continuous Conduction mode - desig	n of filter		
Ι	discontinuous conduction critical values of inductance/load re	ious and	7	15%
	discontinuous conduction mode with constant output voltage	- Output		
	voltage ripple	output		
	Cuk converter - Full-ridge dc-dc Converter - PWM with bipola	r voltage		
	and unipolar voltage switching -comparison of dc-dc converters	- Linear		
II	Power Supply – disadvantages of linear power supply – switch	ed mode	7	15%
	power supply – dc-dc converters with electrical isolation –unidi	rectional		
	core excitation & bidirectional core excitation			
	FIRST INTERNAL EXAMINATION			
	Fly back converter – continuous & discontinuous conductio	n mode -		
	double ended fly back converter – forward converters – basi	c forward		
III	only - double ended forward converter - push pull converter - h	alf bridge	7	15%
	converter – full bridge converter – continuous conduction mode	– current		
	source dc-dc converter	• • • • • • • • • • • • • • • • • • • •		
	Switched Mode DC to AC converter - 1-phase square wave f	ull-bridge		
	inverter - square wave switching scheme - sine PWM switching	scheme –		
IV	PWM with bipolar & unipolar voltage switching - harmonic a	nalysis of		
Ŧ	output voltage – output control by voltage cancellation - 3-pha	se voltage	8	15%
	source inverter – 3-phase sine PWM inverter – RMS line to line	voltage &		
	KIVIS IUndamental line-to-line voltage – square wave ope	ration -		

	Switching utilisation ratio of 1-phase & 3-phase full-bridge inverters		
	SECOND INTERNAL EXAMINATION		
V	Concept of space vector – space vector modulation – reference vector & switching times – space vector sequence – comparison of sine PWM & space vector PWM - programmed (selective) harmonic elimination switching – current controlled voltage source inverter - hysteresis current control	6	20%
VI	Resonant Converters - Basic resonant circuit concepts – series resonant circuit – parallel resonant circuit – load resonant converter - ZCS resonant converter - L type & M type - ZVS resonant converter – comparison of ZCS & ZVS Resonant Converters	7	20%
	END SEMESTED EXAM		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

2014

EE365Prerequisite: NCourse Object:To enabTo impleSyllabusCombinationalSequential DesVHDL SimulatiExpected outsAfter completii. Desiii. Impliii. Progiv. HardText Book:Mark ZvEducationReferences:1. A Anand2. John F V3. Morris NModuleIntroConConI ConConIntroJohn F V3. Morris NIntro <th>Digital System Design Nil tives ble designing and building of real digital circuits lement VHDL programming in digital system design logic using VHDL gate models, Combinational sign, VHDL Models of Sequential Logic Blocks, tion, VHDL Synthesis, Testing Digital Systems, Desi come. ing the course, the students will be able to ign any Digital Circuit for practical application blement any digital system using VHDL gram any VHDL code for practical implementation dware realization of any complex VHDL system.</th> <th>building bloc Complex S ign for Testa</th> <th>earson</th> <th>6 chronous Systems,</th>	Digital System Design Nil tives ble designing and building of real digital circuits lement VHDL programming in digital system design logic using VHDL gate models, Combinational sign, VHDL Models of Sequential Logic Blocks, tion, VHDL Synthesis, Testing Digital Systems, Desi come. ing the course, the students will be able to ign any Digital Circuit for practical application blement any digital system using VHDL gram any VHDL code for practical implementation dware realization of any complex VHDL system.	building bloc Complex S ign for Testa	earson	6 chronous Systems,
Prerequisite: N Course Object • To enab • To imple Syllabus Combinational Sequential Des VHDL Simulati Expected out After completi i. Desi ii. Impl iii. Prog iv. Harce Text Book: Mark Zy Education References: 1. A Aname 2. John F V 3. Morris M Module Introp Prog I Com Com Arch Sign benow	Nil tives ble designing and building of real digital circuits lement VHDL programming in digital system design logic using VHDL gate models, Combinational sign, VHDL Models of Sequential Logic Blocks, tion, VHDL Synthesis, Testing Digital Systems, Desi come. ing the course, the students will be able to ign any Digital Circuit for practical application blement any digital system using VHDL gram any VHDL code for practical implementation dware realization of any complex VHDL system.	building blo Complex S ign for Testa d Edition, P	ocks, Synd equential 3 ability.	chronous Systems,
Course Object • To enab • To imple Syllabus Combinational Sequential Des VHDL Simulati Expected outo After completi i. Desi ii. Impl iii. Prog iv. Harc Text Book: Mark Zy Education References: 1. A Anano 2. John F V 3. Morris M Module Introprog I Com Com Com Arch Sign bence	tives ble designing and building of real digital circuits lement VHDL programming in digital system design logic using VHDL gate models, Combinational sign, VHDL Models of Sequential Logic Blocks, tion, VHDL Synthesis, Testing Digital Systems, Des- trome. ing the course, the students will be able to ign any Digital Circuit for practical application lement any digital system using VHDL gram any VHDL code for practical implementation dware realization of any complex VHDL system.	building blo Complex S ign for Testa d Edition, P	ocks, Sync equential s ability.	chronous Systems,
 To enab To imple To imple Syllabus Combinational Sequential Dess VHDL Simulati Expected oute After completi i. Impl ii. Impl iii. Prog iv. Harce Text Book: Mark Zw Education References: 1. A Aname 2. John F V 3. Morris N Module Introprog I I I Com Com Com Com Sign bence 	ble designing and building of real digital circuits lement VHDL programming in digital system design logic using VHDL gate models, Combinational sign, VHDL Models of Sequential Logic Blocks, tion, VHDL Synthesis, Testing Digital Systems, Desi- come. ing the course, the students will be able to ign any Digital Circuit for practical application blement any digital system using VHDL gram any VHDL code for practical implementation dware realization of any complex VHDL system.	building blo Complex S ign for Testa d Edition, P	ocks, Sync equential s ability.	chronous Systems,
 To implied Syllabus Combinational Sequential Dessive VHDL Simulati Expected outor After completi i. Dessi ii. Impliii. Program iii. A Anano 2. John F V 3. Morris M Module Intro Program Intro Sign bence 	lement VHDL programming in digital system design logic using VHDL gate models, Combinational sign, VHDL Models of Sequential Logic Blocks, tion, VHDL Synthesis, Testing Digital Systems, Des- come. ing the course, the students will be able to ign any Digital Circuit for practical application lement any digital system using VHDL gram any VHDL code for practical implementation dware realization of any complex VHDL system.	building blo Complex S ign for Testa d Edition, P	ocks, Sync equential s ability.	chronous Systems,
Syllabus Combinational Sequential Des VHDL Simulati Expected out After completi i. Desi ii. Impl iii. Prog iv. Harc Text Book: Mark Zy Educatio References: 1. A Anand 2. John F V 3. Morris M Module Introprog I Com Com Com Arch Sign benc	logic using VHDL gate models, Combinational sign, VHDL Models of Sequential Logic Blocks, tion, VHDL Synthesis, Testing Digital Systems, Des come . ing the course, the students will be able to ign any Digital Circuit for practical application lement any digital system using VHDL gram any VHDL code for practical implementation dware realization of any complex VHDL system.	building blo Complex S ign for Testa d Edition, P	ocks, Sync equential s ability.	chronous Systems,
Combinational Sequential Des VHDL Simulati Expected outo After completi i. Desi ii. Impl iii. Prog iv. Harc Text Book: Mark Zy Educatio References: 1. A Anano 2. John F V 3. Morris M Module Intro Prog I Com Com Com Sign benc	logic using VHDL gate models, Combinational sign, VHDL Models of Sequential Logic Blocks, tion, VHDL Synthesis, Testing Digital Systems, Des- come. ing the course, the students will be able to ign any Digital Circuit for practical application lement any digital system using VHDL gram any VHDL code for practical implementation dware realization of any complex VHDL system.	building blo Complex S ign for Testa d Edition, P	equential salution of the second seco	chronous Systems,
Sequential Des VHDL Simulati Expected out After completi i. Desi ii. Impl iii. Prog iv. Harce Text Book: Mark Zw Education References: 1. A Anamo 2. John F V 3. Morris M 3. Morris M Module Intro Prog I Com Com Com Arch Sign bence	sign, VHDL Models of Sequential Logic Blocks, tion, VHDL Synthesis, Testing Digital Systems, Des come. ing the course, the students will be able to ign any Digital Circuit for practical application lement any digital system using VHDL gram any VHDL code for practical implementation dware realization of any complex VHDL system.	Complex S ign for Testa d Edition, P	equential s ability.	Systems,
VHDL Simulati Expected out After completi i. Desi ii. Impl iii. Prog iv. Harc Text Book: Mark Zy Educatio References: 1. A Anano 2. John F V 3. Morris M Module Intro Prog I Com Com Arch Sign benc	tion, VHDL Synthesis, Testing Digital Systems, Des come. ing the course, the students will be able to ign any Digital Circuit for practical application lement any digital system using VHDL gram any VHDL code for practical implementation dware realization of any complex VHDL system.	ign for Testa	ability.	
Expected outo After completi i. Desi ii. Impl iii. Prog iv. Harc Text Book: Mark Zv Education References: 1. A Anano 2. John F V 3. Morris M 3. Morris M Module Intro Prog I Com Com Com Arch Sign benc	come. ing the course, the students will be able to ign any Digital Circuit for practical application lement any digital system using VHDL gram any VHDL code for practical implementation dware realization of any complex VHDL system.	d Edition, P	earson	
After completi i. Desi ii. Impl iii. Prog iv. Harc Text Book: Mark Zv Educatio References: 1. A Anano 2. John F V 3. Morris N Module Intro Prog I Com Com Arch Sign benc	ing the course, the students will be able to ign any Digital Circuit for practical application lement any digital system using VHDL gram any VHDL code for practical implementation dware realization of any complex VHDL system.	d Edition, P	earson	
i. Desi ii. Impl iii. Impl iii. Prog iv. Harc Text Book: Mark Zv Educatio References: 1. A Anano 2. John F V 3. Morris N 3. Morris N Module Intro Prog I Com Com Com Arch Sign benc	ign any Digital Circuit for practical application lement any digital system using VHDL gram any VHDL code for practical implementation dware realization of any complex VHDL system.	l d Edition, P	earson	
ii. Impl iii. Prog iv. Harc Text Book: Mark Zv Educatio References: 1. A Anano 2. John F V 3. Morris N Module Intro Prog I Com Com Arch Sign benc	gram any VHDL code for practical implementation dware realization of any complex VHDL system.	d Edition, P	earson	
III. Prog iv. Harc Text Book: Mark Zv Education References: 1. A Anano 2. John F V 3. Morris M Module Intro Prog I Com Com Arch Sign benc	gram any VHDL code for practical implementation dware realization of any complex VHDL system.	d Edition, P	earson	
IV. Hard Text Book: Mark Zv Education References: 1. A Anano 2. John F V 3. Morris M Module Introprog I Com Com Com Arch Sign bencom	dware realization of any complex VHDL system.	d Edition, P	earson	
Text Book: Mark Zv Education References: 1. A Anano 2. John F V 3. Morris N Module Intro Prog I Com Com II Com III		d Edition, P	earson	
Mark Z Education References: 1. A Anano 2. John F V 3. Morris N Module Intro Prog I Com Com Com I Com II III	walinghi Digital System Design with VUDI Sacon	u Euluoli, P	earson	
References: 1. A Ananov 2. John F V 3. Morris N Module Intro Prog I Com Com Com Intro Image: State of the s	on 2007			
I Com I I Com I I Com I I Com I I Com I I I Com I I I I I I I I I I I I I I I I I I I	01.2007			
2. John F V 3. Morris M Module Intro Prog I Con Con Con Arch Sign benc	dakumar, Digital Electronics Prentice Hall India Feb	2009		
3. Morris N Module Intro Prog I Com Com Arch Sign benc	Wakerly Digital Design Pearson Education Delhi	2002		
Module Intro Prog I Com Com Com II	Mano.Digital Design, Pearson Education, Delhi, 200	2		
Module Intro Prog Com Com Com Arch Sign benc	Course Plan			
Module Intro Prog Com Com Com Arch Sign benc				Sem.
I Intro Prog Com Com Com Arch Sign benc	Contents	1	Hours	Exam Marks
I Con Con Con II Con Arch Sign benc	oduction : Modern Digital Design, CMOS Te	chnology,		
I Con Con Con II	grammable Logic ,Electrical Properties			
Con Con Con Arch Sign benc			4	15%
Con Con Arch Sign benc	nbinational Logic Design : Boolean Algebra , Log	gic Gates,		
Com Arch Sign II	nbinational Logic Design, Timing, Number codes			
II Com Arch Sign benc				
II Con Arch Sign benc		tion and		
II Arci	nhinational Logia using VUDL Cata Models - Entit	ate and		
II benc	nbinational Logic using VHDL Gate Models : Entity hiteotures Identifiers, Spaces and Comments Nat li	Tost		
II	nbinational Logic using VHDL Gate Models : Entity hitectures ,Identifiers , Spaces and Comments ,Net li nal Assignments Generics Constant and Open Ports			
	nbinational Logic using VHDL Gate Models : Entit hitectures ,Identifiers , Spaces and Comments ,Net li nal Assignments ,Generics ,Constant and Open Ports ches Configurations	, Test	8	15%
Con	nbinational Logic using VHDL Gate Models : Entit hitectures ,Identifiers , Spaces and Comments ,Net li nal Assignments ,Generics ,Constant and Open Ports ches, Configurations	,1051		
.Mu	nbinational Logic using VHDL Gate Models : Entit hitectures ,Identifiers , Spaces and Comments ,Net li nal Assignments ,Generics ,Constant and Open Ports ches, Configurations	Decoders		
benc	nbinational Logic using VHDL Gate Models : Entity hitectures ,Identifiers , Spaces and Comments ,Net li nal Assignments ,Generics ,Constant and Open Ports ches, Configurations nbinational Building Blocks : Three-Stat Buffers , I ultiplexers, Priority Encoders , Adders, Parity Checke	Decoders Test		
	nbinational Logic using VHDL Gate Models : Entit hitectures ,Identifiers , Spaces and Comments ,Net li nal Assignments ,Generics ,Constant and Open Ports ches, Configurations nbinational Building Blocks : Three-Stat Buffers , I iltiplexers, Priority Encoders , Adders, Parity Checke ches for Combinational blocks	Decoders ers, Test		
	nbinational Logic using VHDL Gate Models : Entity hitectures ,Identifiers , Spaces and Comments ,Net li nal Assignments ,Generics ,Constant and Open Ports ches, Configurations nbinational Building Blocks : Three-Stat Buffers , I altiplexers, Priority Encoders , Adders, Parity Checke ches for Combinational blocks	Decoders Pers , Test		
C	nbinational Logic using VHDL Gate Models : Entity hitectures ,Identifiers , Spaces and Comments ,Net line nal Assignments ,Generics ,Constant and Open Ports ches, Configurations nbinational Building Blocks : Three-Stat Buffers , I altiplexers, Priority Encoders , Adders, Parity Checke ches for Combinational blocks FIRST INTERNAL EXAMINATIO	Decoders ers , Test		
	nbinational Logic using VHDL Gate Models : Entit hitectures ,Identifiers , Spaces and Comments ,Net li nal Assignments ,Generics ,Constant and Open Ports ches, Configurations nbinational Building Blocks : Three-Stat Buffers , I iltiplexers, Priority Encoders , Adders, Parity Checke ches for Combinational blocks FIRST INTERNAL EXAMINATIO	Decoders ers , Test		
	nbinational Logic using VHDL Gate Models : Entity hitectures ,Identifiers , Spaces and Comments ,Net line nal Assignments ,Generics ,Constant and Open Ports ches, Configurations nbinational Building Blocks : Three-Stat Buffers , I altiplexers, Priority Encoders , Adders, Parity Checke ches for Combinational blocks FIRST INTERNAL EXAMINATIO	Decoders ers, Test N al Systems	7	15%
VHI	nbinational Logic using VHDL Gate Models : Entity hitectures ,Identifiers , Spaces and Comments ,Net li nal Assignments ,Generics ,Constant and Open Ports ches, Configurations nbinational Building Blocks : Three-Stat Buffers , I iltiplexers, Priority Encoders , Adders, Parity Checke ches for Combinational blocks FIRST INTERNAL EXAMINATIO chronous Sequential Design : Synchronous Sequenti odels of Synchronous Sequential Systems, Algorithm chines, Synthesis from ASM chart _State Machines i	Decoders ers , Test N al Systems nic State n VHDI	7	15%
III , Mac	nbinational Logic using VHDL Gate Models : Entity hitectures ,Identifiers , Spaces and Comments ,Net li- nal Assignments ,Generics ,Constant and Open Ports ches, Configurations nbinational Building Blocks : Three-Stat Buffers , I altiplexers, Priority Encoders , Adders, Parity Checke ches for Combinational blocks FIRST INTERNAL EXAMINATIO	Decoders ers, Test		

IV	 VHDL Models of Sequential Logic Blocks : Latches , Flip-Flops , J K and T Flip Flop , Registers and Shift Registers ,Counters , Memory, Sequential Multiplier, Test benches for Sequential Building Blocks Complex Sequential Systems : Data path / Control Partitioning ,Instructions, A Simple Microprocessor, VHDL model of a Simple Microprocessor 	8	15%
	SECOND INTERNAL EXAMINATION		
V	 VHDL Simulation: Event Driven Simulation, Simulation of VHDL models, Simulation modelling issues, Fire Operations. VHDL Synthesis: RTL Synthesis, Constraints, Synthesis for FPGAs, Behavioural Synthesis, Verifying Synthesis Results 	8	20%
VI	Testing Digital Systems : Need for Testing , Fault Models , Fault oriented Test Pattern Generation , Fault Simulation, Fault Simulation in VHDL Design for Testability : Ad Hoc Testability improvements , Structured Design for Test , Built-in-Self-Test , Boundary scan (IEEE 1149 .1)	7	20%
	END SEM <mark>E</mark> STEK EXAM		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course code	Course Name	L-T-P -Credits	Year of Intro	oduction	
EE366	Illumination Engineering	3-0-0-3	2016		
Prerequisite:	Nil	·			
Course Obje	ctives				
To pro	ovide an introduction to the fundamenta	ls of illumination engir	eering and		
archite	ectural lighting design.				
• To im	• To impart lighting fundamentals, measurement, and technology and their application in the				
analys	analysis and design of architectural lighting systems				
Syllabus	API ABLUU	KALAI	VI		
Introduction	of Light, Types of illumination	, Lighting systems	, Lighting S	cheme ,	
Measurement	of Light, Laws of illumination, D	esign of Interior Light	ing, Determi	nation of	
Lamp Lumen	i output taking into account voltage a	ind temperature variat	ions, Indian	standard	
recommendat	case. Corridor lighting and industrial b	uilding Design of Out	eas, Special le	ature for	
Special Feature	res of Aesthetic Lighting	ununig, Design of Out		,	
Expected out	come				
The students	will be able to:				
i. Identi	fy the criteria for the selection of lamps	and lighting systems for	or an indoor o	r	
outdo	or space				
ii. Perfor	m calculations on photometric perform	ance of light sources an	d luminaires f	for	
lightir	ng design				
iii. Evalu	ate different types of lighting designs an	nd applications			
Text Books					
1. D.C. I	Pritchard Lighting, Routledge, 2016	·			
2. Jack I	. Lindsey, Applied Illumination Engine	ering, PHI, 1991			
3. John I	viatthews introduction to the Design and	a Analysis of Building	Electrical Sys	tems,	
	Cayless Lamps and Lighting Poutled	na 100 <mark>6</mark>			
References	Cayless, Lamps and Eighting, Roundag	30, 1990			
1. IS C	ODE 3646				
2. IS C	ODE 6665				
	Course	Plan	100		
	Lato,			Sem.	
Module	Contents		Hours	Exam	
In	troduction of Light : Types of ill	umination Day lighti	ng	Warks	
	upplementary artificial lighting and tota	l lighting Quality of g	ng,		
lig	phing Factors affecting the lighting-	shadow, glare, reflecti	on		
\mathbf{I} \mathbf{I} \mathbf{I}	plour rendering and stroboscopic eff	ect. Methods of artific	cial 6	15%	
lig	ting, Lighting systems-direct, indi	rect, semi direct, se	emi		
in	direct, Lighting scheme, General and lo	calised			
М	easurement of Light : Definition of	luminous flux, Lumin	nous		
in	tensity, Lumen, Candle power, Illumin	ation, M.H.C.P, M.S.	С.Р,		
M	.H.S.C.P, Lamp efficiency, Brightne	ss or luminance, Law	s of		
II ill	umination, Inverse square law and	Lambert's Cosine	law, 7	15%	
	umination at horizontal and vertical	plane from point sou	irce,		
	oncept of polar curve, Calculation of lu	iminance and illumina	tion		
in	case of linear source, round source and	That source		L	

III	Design of Interior Lighting : Definitions of maintenance factor, Uniformity ratio, Direct ratio, Coefficients of utilisation and factors affecting it, Illumination required for various work planes, Space to mounting height ratio, Types of fixtures and relative terms used for interior illumination such as DLOR and ULOR, Selection of lamp and luminance, Selection of utilisation factor, reflection factor and maintenance factor Determination of Lamp Lumen output taking into account voltage and temperature variations, Calculation of wattage of each lamp and no of lamps needed, Layout of lamp luminaire, Calculation of space to mounting height ratio, Indian standard recommendation and standard practices for illumination levels in various areas, Special feature for entrance, staircase, Corridor lighting and industrial building	8	15%
IV	Design of Outdoor Lighting : Street Lighting : Types of street and their level of illumination required, Terms related to street and street lighting, Types of fixtures used and their suitable application, Various arrangements in street lighting, Requirements of good street lighting, Selection of lamp and luminaire, Calculation of their wattage, Number and arrangement, Calculation of space to mounting height ratio, Calculation of illumination level available on road	7	15%
	SECOND INTERNAL EXAMINATION		
V	Design of Outdoor Lighting : Flood Lighting : Terms related to flood lighting, Types of fixtures and their suitable applications, Selection of lamp and projector, Calculation of their wattage and number and their arrangement, Calculation of space to mounting height ratio, Recommended method for aiming of lamp	7	20%
VI	Special Features of Aesthetic Lighting : Monument and statue lighting, Sports lighting, Hospital lighting, Auditorium lighting	7	20%
	END SEMESTER EXAM		

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

Maximum Marks: 100

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

> 14

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course	code Course Name	L-T-P -	Yea	r of
EE2	7 Now and Danawahle Sources of En			
LES	New and Kenewable Sources of En	ergy 5-0-0-5	20	10
Prerequ	isite: Nil			
Course	Objectives:			
• 1	o give sufficient knowledge about the promising	new and renewable sour	ces of en	ergy
• 1	o equip students in working with projects and	to take up research wo	ork in con	nnected
a	reas.			
Syllabus	AIJADUULI	VUTUNI		
Solar en	ergy - Solar radiation measurements - Application	ns of solar energy - Ener	gy from	oceans-
Tidal en	ergy - Wind energy -Small Hydro Power (SH	IP) Stations- Biomass	and bio-	-fuels -
geothern	nal energy -Power from satellite stations - Hydrog	en energy.		
Expecte	d Outcome:			
•]	he students will be able to design and analyse the	performance of small is	solated	
r	enewable energy sources.			
Referen	ces:			
1. A	A.A.M. Saigh (Ed): Solar Energy Engineering, Ac	ademic Press, 1977	. 1 .	r ,
2. A	bbasi S. A. and N. Abbasi, Renewable Energy Se	ources and Their Enviro	nmental	Impact,
	rentice Hall of India, 2001	Sustainable Euture O	rford Un	internetity
5. E	ress 1006	Sustainable Future, O.	ciola Uli	Iversity
1 4 F	arnest I and T Wizelius Wind Power Plants an	d Project Development	PHI Le	arning
	011	a Project Development		, arining,
5. F	Kreith and J.F. Kreider: Principles of Solar Engi	neering, McGraw Hill,	978	
6. 0	J.N. Tiwari: Solar Energy-Fundamentals, Design	n, Modelling and Appl	ications,	Narosa
F	ublishers, 2002		,	
7. J	A. Duffie and W.A. Beckman: Solar Energy Ther	mal Processes, J. Wiley	, 1994	
8. J	ohansson T. B., H. Kelly, A. K. N. Reddy and	R. H. Williams, Rene	wable Er	nergy –
S	ources for Fuel and Electricity, Earth scan Public	ations, London, 1993.		
9. k	Ihan B. H., Non-Conventional Energy Resources,	Tata McGraw Hill, 200	9.	
10. F	ao S. and B. B. Parulekar, Energy Technology, K	hanna Publishers, 1999.		
11. 5	ab S. L., Renewable and Novel Energy Sources, I	MI. Publications, 1995.		
12. 8	awhney G. S., Non-Conventional Energy Resource	ces, PHI Learning, 2012		CDC
13. I	wari G. N., Solar Energy- Fundamentals, Des	ign, Modelling and Ap	plication	s, CRC
1	Course Plan			
				Sem.
Module	Contents		Hours	Exam
				Marks
	Introduction, Classification of Energy Resources	; Conventional Energy		
	Resources - Availability and their limitation	ns; Non-Conventional		
Ι	Energy Resources – Classification, Adv	antages, Limitations;	5	15%
	Comparison of Conventional and Non-	Conventional Energy		
	STORAGE: Sizing and Necessity of Energy Sto	gy Suchalio. EINERU I rage		
	SOLAR THERMAL SYSTEMS: Introduction	Solar Constant Rasio		
	Sun-Earth Angles Measurement of Solar	Radiation Data –		
II	Pyranometer and Pyrheliometer .Principle of	Conversion of Solar	11	15%
	Radiation into Heat, – Solar thermal collectors	- General description		

	and characteristics - Flat plate collectors - Heat transfer processes -		
	Solar concentrators (parabolic trough, parabolic dish, Central Tower		
	Collector) –performance evaluation		
	FIRST INTERNAL EXAMINATION	-	T
	SOLAR ELECTRIC SYSTEMS: Solar Thermal Electric Power		
	Generation –; Solar Photovoltaic – Solar Cell fundamentals,	~	1.70/
111	characteristics, classification, construction of module, panel and array.	2	15%
	Solar PV Systems – stand-alone and grid connected; Applications –		
	Street lighting, Domestic lighting and Solar water pumping systems		
	Components of Tidel Dever Plant (TDD). Classification of Tidel Dever		
	Dianta Adventages and Limitations of TDD Ocean Thermal Energy		
IV	Conversion (OTEC): Principle of OTEC system Methods of OTEC		
	power generation - Open Cycle (Claude cycle) Closed Cycle	7	15%
	(Anderson cycle) and Hybrid cycle (block diagram description of		
	OTEC): Site-selection criteria. Biofouling. Advantages & Limitations		
	of OTEC.		
SECOND INTERNAL EXAMINATION			•
	WIND ENERGY: Introduction, Wind and its Properties, History of		
	Wind Energy, Wind Energy Scenario – World and India. Basic		
V	principles of Wind Energy Conversion Systems (WECS),	7	2004
v	Classification of WECS, Parts of WECS, Derivation for Power in the	/	2070
	wind, Electrical Power Output and Capacity Factor of WECS,		
	Advantages and Disadvantages of WECS		
	BIOMASS ENERGY: Introduction, Photosynthesis process, Biomass		
	fuels, Biomass conversion technologies, Urban waste to Energy		
	Conversion, Biomass Gasification, Biomass to Ethanol Production,		
	Biogas production from waste biomass, factors affecting biogas		
VI	generation, types of blogas plants – KVIC and Janata model; Blomass	7	20%
	program in India. Small hydro power: Classification as micro, mini and		
	small hydro projects - Basic concepts and types of turbines - Design		
	Cell Small Hydro Resources Hydrogen Energy alcohol anergy		
	nuclear fusion and power from satellite stations		
	END SEMESTER EXAM		

Maximum Marks: 100

2014

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions. One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	ode Course Name	L-T-P - Credits	Yea Introd	ar of Juction
EE368	8 SOFT COMPUTING	3-0-0-3	20)16
Prerequis	site: Nil			
Course O)hiectives			
•	To provide the students with the concepts of soft comp	uting technique	es such as	sneural
_	networks fuzzy systems genetic algorithms	ating teeninque	o ouch u	, nourur
	networks, ruzzy systems, genetic argoritims			
Introduction to Soft Computing and Neural Networks, Fuzzy Sets and Fuzzy Logic: Fuzzy Sets, Neuro- Fuzzy Modelling, Machine Learning, Machine Learning Approach to Knowledge Acquisition				
Expecte	ed outcome.	CUL		
The stude	ents will be able to get an idea on :	\bigvee		
i. A	Artificial Intelligence, Various types of production systems, ch	aracteristics of p	production	l
S.	ystems.			
11. N	Neural Networks, architecture, functions and various algorithm	is involved.		
III. Г iv (Fuzzy Logic, various fuzzy systems and men functions.			
	The unified and exact mathematical basis as well as the general	1 principles of y	arious soft	÷
	computing techniques	i principies or v	u110us son	
Text Bo	ok:			
1. E	Digital Neural Network -S.Y Kung, Prentice-Hall of India			
2. J	ames A. Freeman and David M. Skapura, "Neural Networks A	Algorithms, App	lications,	and
Р	Programming Techniques", Pearson Edn.,			
3. J	yh-Shing Roger Jang, Chuen-Tsai Sun, <mark>Ei</mark> ji Mizutani, "Neuro	-Fuzzy and Soft	Computir	ıg",
P	Prentice-Hall of India,			
Referen	ices:			
1. A	Amit Konar, "Artificial Intelligence and Soft Computing", First	st Edition,CRC I	Press, 200	0.
2. Ľ	David E. Goldberg, Genetic Algorithms in Search, Optimization	on and Machine	Learning"	,
	Addison Wesley	1 4 1'	· " D	<i>.</i> ·
3. C	Jeorge J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-1n	eory and Applica	ations", Pi	entice
4 N	Mitchell Melanie "An Introduction to Genetic Algorithm" Pr	entice Hall 1998	2	
5 5	Simon Havkin "Neural Networks: A Comprehensive Foundat	ion" Prentice H	, all	
5. 5	Course Plan		<i></i> ,	
				Sem.
Module	Contents		Hours	Exam Marks
	Introduction To Soft Computing And Neural Networks :	Evolution of		
Ι	Computing - Soft Computing Constituents – From Conve	entional AI to	7	15%
	Computational Intelligence - Adaptive Networks - I	feed forward	-	
	Networks – Supervised Learning	Dainformant		
	Learning _ Unsupervised Learning Neurol Networks - F	_ Adaptivo		
п	Resonance architectures	– Adaptive	7	15%
11	Fuzzy Sets And Fuzzy Logic: Fuzzy Sets – Operations on F	uzzy Sets –	/	1570
	Fuzzy Relations - Fuzzy Rules and Fuzzy Reasoning	uzzy bets		
	FIRST INTERNAL EXAMINATION	ON	I	L
	Fuzzy Inference Systems – Fuzzy Logic – Fuzzy Expert S	vstems – Fuzzy		
	Decision Making	, _ terms I welly	_	150/
	Neuro-Fuzzy Modeling : Adaptive Neuro-Fuzzy Inferen	nce Systems –		15%
	Coactive Neuro-Fuzzy Modeling - Classification and Regre	ssion Trees		

IV	Data Clustering Algorithms – Rulebase Structure Identification Neuro- Fuzzy Control.	7	15%
	SECOND INTERNAL EXAMINATION		
\mathbf{V}	Machine Learning : Machine Learning Techniques – Machine Learning Using Neural Nets – Genetic Algorithms (GA)	7	20%
VI	Applications of GA in Machine Learning - Machine Learning Approach to Knowledge Acquisition. Support Vector Machines for Learning – Linear Learning Machines – Support Vector Classification – Support Vector Regression - Applications.	7	20%

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course 1	No. Course Name	L-T-P -Credits	Ye	ear of	
			Intro	oduction	
EE369	9 High Voltage Engineering	3-0-0-3	2	2016	
Prerequis	site: Nil				
Course O	Dbjectives				
• To t	understand generation and measurement te	chniques of high voltage DC	, AC and	limpulse	
volt	voltages				
• To i	understand various types of testing technic	ques used in power equipme	nts and o	lesign of	
high	i voltage lab and the grounding of impulse	testing laboratories.			
Syllabus	:		a nan di	ature atives	
Generatio	on of HVDC, HVAC and impulse wave for	orms,-measurement technique	es-non de	estructive	
lesung te	echniques- testing of power equipment	s, design of testing lab a	na grou	lang of	
Expected	outcome				
• Th	no students will know several of methods o	f generating different test vol	tages tes	ting	
• 11 m	ethods used in power equipments and design	an of high voltage laboratorie	e cages, ies	ung	
	ethous used in power equipments and desig	gi of ingli voltage laboratorie	5.		
Text Bo	ok:				
•	C.L Wadhwa High voltage Engineering,	New age international (P) lt	d, 2007		
Referen	ces:				
1. Di	ieter Kind, Kurt Feser, "High voltage t	est techniques", SBA Elect	rical Eng	gineering	
	Series, New Delhi, 1999.		. 1 .	, F 1 ·	
2. Ki	uttel, E., Zaengl, W.S. and Kuttel J., "Hig	h Voltage Engineering Funda	amentals	, Elsvier	
	ndia P Lia, 2005	a Engineering" Tata MaGra	w 11:11 D	ubliching	
5. No	Company I td. New Delhi 2004	e Engineering , Tata McGra	w пш ғ	uonsning	
	Cours	e Plan			
Module	Contents		Hours	Sem	
mouule	contents		nours	Exam	
	Este			Marks	
Ι	Generation and transmission of electric	energy – voltage stress –			
	testing voltages-AC to DC conversion –	rectifier circuits – cascaded	7	200/	
	circuits – voltage multiplier circuits –	Cockroft-Walton circuits -	/	20%	
	voltage regulation – ripple factor – Van de	e-Graaff generator.			
II	Generation of high AC voltages-Testing	; transf <mark>ormer – sin</mark> gle unit			
	testing transformer, cascaded transform	er – equivalent circuit of	7	20%	
	testing transformer, cascaded transform cascaded transformer – generation of high	er – equivalent circuit of gh frequency AC voltages-	7	20%	
	testing transformer, cascaded transform cascaded transformer – generation of hig series resonance circuit – resonant transfo	er – equivalent circuit of gh frequency AC voltages- ormer – voltage regulation.	7	20%	
	testing transformer, cascaded transform cascaded transformer – generation of his series resonance circuit – resonant transfor FIRST INTERNAL H	er – equivalent circuit of gh frequency AC voltages- ormer – voltage regulation. EXAMINATION	7	20%	
III	testing transformer, cascaded transform cascaded transformer – generation of hig series resonance circuit – resonant transfor FIRST INTERNAL F Generation of impulse voltages-Marx g	er – equivalent circuit of gh frequency AC voltages- ormer – voltage regulation. EXAMINATION enerator – Impulse voltage	7	20%	
III	testing transformer, cascaded transform cascaded transformer – generation of his series resonance circuit – resonant transfor FIRST INTERNAL H Generation of impulse voltages-Marx g generator circuit –analysis of various	er – equivalent circuit of gh frequency AC voltages- ormer – voltage regulation. EXAMINATION enerator – Impulse voltage impulse voltage generator	7	20%	
III	testing transformer, cascaded transform cascaded transformer – generation of hig series resonance circuit – resonant transfor FIRST INTERNAL F Generation of impulse voltages-Marx g generator circuit –analysis of various circuits - multistage impulse generator of	er – equivalent circuit of gh frequency AC voltages- ormer – voltage regulation. EXAMINATION enerator – Impulse voltage impulse voltage generator circuits – Switching impulse	7	20%	
III	testing transformer, cascaded transform cascaded transformer – generation of his series resonance circuit – resonant transfor FIRST INTERNAL H Generation of impulse voltages-Marx g generator circuit –analysis of various circuits - multistage impulse generator of generator circuits – impulse current gener Paak voltage measurements by sphere are	er – equivalent circuit of gh frequency AC voltages- ormer – voltage regulation. EXAMINATION enerator – Impulse voltage impulse voltage generator circuits – Switching impulse rator circuits	7 7 7	20%	

	- voltage dividers and impulse voltage measurements- measurement			
	of impulse currents			
	SECOND INTERNAL EXAMINATION			
V	Objectives of high voltage testing, Classification of testing methods- self restoration and non-self restoration systems-standards and specifications, Measurement of dielectric constant and loss factor, Partial discharge measurements-Basic partial discharge(PD) circuit – PD currents- PD quantities - Corona and RIV measurements	7	15%	
VI	Testing of insulators, bushings, air break switches, isolators, circuit breakers, power transformers, surge diverters, cables -testing methodology. Classification of high voltage laboratories, Voltage and power rating of test equipment, Layout of high voltage laboratories, Grounding of impulse testing laboratories.	10	15%	
	END SEMESTER EXAM			

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course	Course Name	L-T-P -	Year of			
code		Credits	Introduction			
EE372	Biomedical Instrumentation	3-0-0-3	2016			
Prerequisite: Nil						

Course Objectives

• To give a brief introduction to human physiology and various instrumentations system for measurement and analysis of physiological parameters.

Syllabus:

Development of biomedical instrumentation, Sources of bioelectric potentials, Bio potential electrodes, Electro-conduction system of the heart, Measurement of blood pressure, Measurement of heart sounds, Cardiac pacemakers, defibrillators, Electro encephalogram, Muscle response, Respiratory parameters, Therapeutic Equipments, Imaging Techniques, Instruments for clinical laboratory, Electrical safety, tele- medicine

Expected outcome.

Text Book:

- 1. J. G. Webster, Medical Instrumentation, Application and Design, John Wiley and Sons
- 2. L. Cromwell, F. J. Weibell and L. A. Pfeiffer, Biomedical Instrumentation Measurements, Pearson education, Delhi, 1990.

References:

- 1. R. S. Khandpur, Handbook of Biomedical Instrumentation, Tata Mc Graw Hill
- 2. J. J. Carr and J. M. Brown, Introduction to Biomedical Equipment Technology, Pearson Education

	Course Flan		
Module	Contents	Hours	Sem. Exam Marks
Ι	Development of biomedical instrumentation, biometrics, man instrument system components block diagram, physiological systems of the body (brief discussion on Heart and cardio vascular system, Anatomy of nervous system, Physiology of respiratory systems) problems encountered in biomedical measurements. Sources of bioelectric potentials – resting and action potentials - propagation of action potentials – bio electric potentials example (ECG, EEG, EMG, ERG, EOG,EGG etc.)	7	15%
п	Bio potential electrodes – theory – microelectrodes – skin surface electrodes – needle electrodes – biochemical transducers – transducers for biomedical applications. Electro-conduction system of the heart. Electro cardiography – electrodes and leads – Einthoven triangle, ECG read out devices, ECG machine – block diagram.	7	15%
	FIRST INTERNAL EXAMINATION		
III	Measurement of blood pressure – direct and indirect measurement – oscillometric measurement –ultrasonic method, measurement of blood flow and cardiac output, plethysmography –photo electric and impedance plethysmographs Measurement of heart sounds –phonocardiography.	7	15%

IV	Cardiac pacemakers – internal and external pacemakers, defibrillators. Electro encephalogram –neuronal communication – EEG measurement. Muscle response– Electromyogram (EMG) – Nerve Conduction velocity measurements- Electromyogram Measurements. Respiratory parameters – Spiro meter, pneumograph	7	15%
	SECOND INTERNAL EXAMINATION		
V	Ventilators, heart lung machine, hemodialysis, lithotripsy, infant incubators X-rays- principles of generation, uses of X-rays- diagnostic still picture, fluoroscopy, angiography, endoscopy, diathermy. Basic principle of computed tomography, magnetic resonance imaging system and nuclear medicine system – radiation therapy. Ultrasonic imaging system - introduction and basic principle.	8	20%
VI	Instruments for clinical laboratory – test on blood cells – chemical tests - Electrical safety– physiological effects of electric current – shock hazards from electrical equipment – method of accident prevention, introduction to tele- medicine.	6	20%

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5) = 40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

2014

Course c	ode	Course Name	L-T-P -Credits	Year of Intr	oduction
EE401	l	Electronic Communication	3-0-0-3	2010	6
Prerequis	site:	Nil			
Course O	bjec	tives			
• To	intro	oduce the applications of communication	n technology.		
• To	und	erstand the methods and techniques use	d in communication fie	eld.	
Syllabus:					
AM and I	FM f	undamentals-AM and FM transmitters	and receivers-Televisi	on and radar	systems-
Digital co	mmu	nication-Satellite communication-Cellu	ılar telephone.	ANA	
Expected	outo	ome		11.1.1	
The stude	nts w		· · · · · · · · · · · · · · · · · · ·	1. Au	
1.	Uno	derstand the need of modulation in trans	sterring a signal throug	in either wirel	ess or
ii	Ro Ro	able to apply applog modulation technic	aues and receiver fund	omentals in a	nalog
11.	con	able to apply analog modulation technic	ques and receiver runu	amentais in ai	lalog
iii	Be	to apply baseband digital encoding & d	ecoding techniques in	the storage / t	ransmis-
	sio	of digital signal through wired channe		ane storage / a	
iv.	Un	lerstand the performance of communication	ation systems in the pro-	esence of nois	e and in-
	terf	erence	•		
Text Bool	ks:				
1. Ke	ennec	ly G., <i>Electronic Communication Syster</i>	ns, McGraw-Hill, New	York, 2008.	
2. Ro	ody	and Coolen, <i>Electronic Communicatior</i>	n, Prentice Hall of India	a LTD., New I	Delhi,
20	07.				
Reference	es:			11 CT 11 TT	DN
1. W	iiiian	n Scheweber, <i>Electronic Communicatio</i>	<i>n Systems</i> , Prentice Ha	II of India LI	D, New
2 W	$\frac{1111}{2}$	2004. Tomasi Electronic Communication Su	stams Prontice Hall of	India LTD N	
$\mathbf{D} \in \mathbf{D} $	ayne Alhi '	2004	stems, i renuce fran of	iliula LID, N	Cw
3. Fr	ank F	R. Dungan, <i>Electronic Communication</i>	Systems, 3/e, Vikas Pul	olishing Hous	e. 2002.
4. Si	mon	Haykins, Communication Systems, John	n Wiley, USA, 2006.		-,
5. Br	uce (Carlson. Communication Systems, Tata	McGraw Hill, New De	lhi, 2001.	
6. Ta	ub aı	nd Schilling, Principles of Communicat	ion Systems, McGraw-	Hill, New Yor	rk, 2008.
7. Ar	iokh	Singh, Principles of Communication E	ngineering, S. Chand a	nd Company	Ltd.,
De	elhi.	ESTO			
	1	Course	Plan		
Module		Contents		Hours	Sem.
					Exam
	A 3 4	1 FM from January 4 - Ja			Marks
I		Erequency spectrum vector repres	entation nower relat	ions	
		relation of AM - DSB DSB/SC SSB	VSB	6	15%
	50		V D D	0	1570
	FM	- frequency spectrum - power relation	S		
II	AM	and FM transmitters and receivers			
	Bloo	ck diagrams of low power and high pov	ver AM transmission -	AM	
	rece	ivers: straight receivers super hetrod	yne receiver - choice	e of	
	inte	mediate frequency - simple AVC circuit	t	8	15%
	Bloo	ck diagrams of direct FM transmitter and	nd Armstrong transmit	ter -	
	FM	receivers (balanced -	1 \		
	slop	e detector and Foster-Seely discriminat	or only).		
		FIRST INTERNAL EX	AMINATION		

ш	Television and radar systems Principles of television engineering - Requirements and standards – need for scanning - types of camera tubes and picture tubes - B/W and colour systems - PAL - CCTV - Cable TV-high definition television. Radar and navigation: principle of radar and radar equation, block schematics of pulsed radar.	8	15%
IV	Digital communication: Principles of digital communication – - Sampling process-pulse modulation Techniques- sampling process-PAM, PWM and PPM concepts - PCM encoder and decoder Applications of data communication	6	15%
SECOND INTERNAL EXAMINATION			
V	Satellite communication		
	Multiple access (MA) techniques-FDMA, TDMA, CDMA, SDMA - applications in satellite communication wire, MA techniques applications in wired communication. in satellite communication, earth station; Fibers – types: sources, detectors used, digital filters, optical link	8	20%
VI	Cellular telephone - Basic concepts, frequency reuse, interference cell splitting, sectoring, cell system layout, cell processing. Fibers – types: sources, detectors used, digital filters, optical link: Bluetooth, Zig-Bee, GPS, Wi-Fi, Wi-Max based communication	6	20%
	END SEMESTER EXAM		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	ode Course Name	L-T-P - Credits	Year	of of	
EE40 2	Special Electrical Machines	3-0-0-3	201	2016	
Prerequis	site: Nil			-	
Course O	bjectives				
	• To get an overview of some of the special r	machines for	control and	industrial	
	applications				
Syllabus	ADIADDILL IZ	A T A A			
AC Serv	omotors – construction – operation - DC servomo	otors – Stepper	motor – oj	peration –	
types-mod	les of excitation – AC series motor – Universal mo	otor – Hysteres	18 motor – F	S motor	
Linear mc	switched reluctance motor – reinfahent magnet i	\mathcal{K} motor – B	Tusilless DC		
Expected	outcome.	TY			
•	• The students will gain knowledge in the constructio	n and principle	of operation of	of certain	
	special electrical machines having various application	ns.	1		
Text Boo	k:				
E. G.	Janardhanan, 'Special Electrical Machines' PHI Learnin	ng Private Limito	ed.		
Reference	es:				
1. Irv	ring L. Kosow.'Electrical Machinery and Transformers',	Oxford Science	Publications	•	
2. T.	J. E. Miller, 'Brushless PM and Reluctance Motor Drive.	s'.C.Larendon F	Press, Oxford.		
3. Th	eodore Wildi, 'Electric Machines, Drives and Power Sys	stems', Prentice	Hall India Lto	l. Honol Edu	
4. Ve	Course Plan	Motors .McGrav	v Hill Interna	tional Edn.	
	Course Fran			Sem.	
Module	Contents		Hours	Exam Marks	
	AC Servomotors- Construction-principle of	operation -	-		
	performance characteristics - damped AC servor	motors – Drag	3		
T	cup servomotor – applications.		7	15%	
I	DC servomotors – field and armature controlled D	OC servomotor	S /	1370	
	- permanent magnet armature controlled - series	split field DC			
	servomotor.	/			
	Stepper motors – Basic principle – different type	es – variable			
	reluctance- permanent magnet – hybrid type –	comparison –			
II	theory of operation – monofilar and bifilar winding	gs – modes of	7	15%	
	excitation – drive circuits – static and dynamic ch	aracteristics –			
	applications	ATION			
	FIRST INTERNAL EXAMINA	ATION			
	Single phase special electrical machines – AC	series motor	1		
	construction – principle of working – phasor diagr	ram – umversa		150/	
111		c	/	15%	
	Hysteresis motor- constructional details- principle	of operation -	-		
	torque-slip characteristics – applications.	•			
	Keluctance motors – principle of operation – tord	que equation -	-		
IV	motors – principle of operation – power conver	rter circuits -	2 7	15%	
	torque equation – different types – comparison – an	plications			
IV	torque slip characteristics-applications. Switch motors – principle of operation – torq	que equation - ned reluctance erter circuits -	2 7	15%	
	torque equation – different types – comparison – ap	plications.			

SECOND INTERNAL EXAMINATION				
V	Permanent Magnet DC Motors – construction – principle of working. Brushless dc motor – construction – trapezoidal type-sinusoidal type – comparison – applications.	7	20%	
VI	Linear motors – different types – linear reluctance motor – linear synchronous motors – construction – comparison. Linear induction motors – Expression for linear force – equivalent circuit – applications.	7	20%	
END SEMESTED EVAM				

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd.

COURS CODE	E COURSE NAME	L-T-P- CREDITS	YE INTRO	AR OF DUCTION
EE403	DISTRIBUTED GENERATION AND SMART	3-0-0-3		2016
	GRIDS	TAA	4	
Prerequis	ite: Nil	LAN	1	
Course of	ojective.	IC A	1	
• To	develop a conceptual introduction to various distributed	l generation s	ystems, r	nicro grids,
sm	art grids and their control	Y		
Syllabus:				
Introducti	on to distributed generation and smart grids - Distributed	d Energy Res	ources –	Micro Grids
and their	control – Protection issues for Microgrids - Smart Grid	s: Componen	ts – NIS'	Γ Reference
architectu	e – Smart meters - Wide Area Measurement System (W	VAMS), Phas	se Measu	rement Unit
(PMU) - 0	lemand response- Demand Side Management - Smart S	ubstations, H	IAN, NA	N, SANET,
Cloud con	puting in smart grid – Power Quality issues with smart g	grid		
Expected	Outcome:			
The stude	nts will be able to:			
i. Ex	plain various distributed generation systems			
ii. Ur	derstand the microgrids and their control schemes			
iii. Ur	derstand various developments happening in the field of	Smart Grids.		
TEXT B	DOKS/REFERENCES:			
1. Al 62	Keyhani, Design of Smart Power Grid Renewable Ener, 761-7, Wiley	gy Systems, I	SBN: 97	8-0-470-
2. Jai	nes Momoh, Smart Grid: Fundamentals of Design and A	nalysis, ISBN	<mark>J: 9</mark> 78-0-4	470-88939-
8,	Wiley			
3. R. M	C. Durgan, M. F. Me Granaghen, H. W. Beaty, "Electric Graw-Hill	al Power Sys	tem Qual	ity",
4. Re	mus Teodorescu, Marco Liserre, Pedro Rodriguez, Grid	Converters fo	or Photov	oltaic and
W	nd Power Systems, ISBN: 978-0-470-05751-3, Wiley			
5. S.	Chowdhury, S.P. Chowdhury and P. Crossley, Microgrid	ls and Active	Distribut	ion
Ne	tworks, ISBN 978-1-84919-014-5, IET, 2009			
	COURSE PLAN			
Module	Contents		Hours	End.
				Sem.
				Exam.
				Marks
I	Distributed generation – Introduction - Integration of a	listributed		1.1001 110
-	generation to Grid – Concepts of Micro Grid - Typical	Microgrid	7	15%
	configurations - AC and DC micro grids - Intercon	nection of		/ •
	Microgrids - Technical and economical advantages of M	licrogrid -		

	Challenges and disadvantages of Microgrid development Smart Grid: Evolution of Electric Grid - Definitions and Need for Smart Grid, Opportunities, challenges and benefits of Smart		
II	Grids Distributed energy resources: Introduction - Combined heat and		
	power (CHP) systems - Solar photovoltaic (PV) systems – Wind energy conversion systems (WECS) - Small-scale hydroelectric power generation - Storage devices: Batteries: Lead acid, nickel metal hydrate, and lithium ion batteries , ultra-capacitors, flywheels Control of Microgrids: Introduction to Central Controller (CC) and Microsource Controllers (MCs) - Control functions for microsource controller, Active and reactive power control, Voltage control, Storage requirement for fast load tracking, Load sharing through power-frequency control		15%
III	Protection issues for Microgrids: Introduction, Islanding, Different islanding scenarios, Major protection issues of stand- alone Microgrid - Impact of DG integration on electricity market, environment, distribution system, communication standards and protocols. Smart Grid: Components – NIST Smart Grid Reference Architecture Introduction to Smart Meters, Electricity tariff – one part tariff, two tariff and maximum demand tariff - Dynamic pricing: time- of-use (TOU) pricing, critical-peak pricing (CPP) and Real Time Pricing- Automatic Meter Reading(AMR), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation. Intelligent Electronic Devices (IED) and their application for monitoring & protection, Wide Area Measurement System (WAMS), Phase Measurement Unit (PMU).	7	15%
IV	Smart energy efficient end use devices-Smart distributed energy resources- Load Curves-Load Shaping Objectives-Methodologies - Peak load shaving - Energy management-Role of technology in demand response- Demand Side Management – Numerical Problems	7	15%
V	Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood-Area Networks (NANs), Sensor and Actuator Networks (SANETs) Smart Substations, Substation Automation, IEC 61850 Substation Architecture, Feeder Automation.	7	20%

VI	Cloud computing in smart grid: Private, public and Hybrid cloud.Cloud architecture of smart grid.Power quality: Introduction - Types of power quality disturbances- Voltage sag (or dip), transients, short duration voltage variation,		
	Long duration voltage variation, voltage imbalance, waveform distortion, and voltage flicker - Harmonic sources: SMPS, Three phase power converters, arcing devices, saturable devices, fluorescent lamps, harmonic indices (THD, TIF, DIN, C – message weights) Power quality aspects with smart grids.	8	20%
	UNIVERSILI		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course	Course Name L-	T-P -	Ye	ar of duction
EE404	INDUSTRIAL INSTRUMENTATION AND 3-)-0-3	2	016
	AUTOMATION		_	010
Prerequis	ite: Nil			
Course O	bjectives	N	6	
	• To impart knowledge about Industrial instrumentation and a	itomat	tion	
Syllabus:	TROUBLOCCIONE	12	*	
Dynamic	characteristic of instrumentation- Transducers: Characteristics,	Appli	cations	– Nano
instrumen	ation - signal conditioning, MEMS, Virtual instrumentation-	Autom	nation s	system -
actuators -	- sequence control, PLC			
Expected	Outcome:			
After the c	completion of the course, the students will be able to:			
1. 	Select instruments and transducers for various physical variable	.		
11. 	Get an insight on data acquisition, processing and monitoring sy	stem		
111. 	Design various signal conditioning systems for transducers.			
1V.	Analyze dynamic responses of various systems.			
V.	Understand the programming realization of PI C			
VI. Toyt bool			-	
1 Cu	rtis D Johnson "Process Control Instrumentation Technology"	рHI 10	986	
1. Collocation 2 Do	eblin F.O. 'Measurement Systems: Application and Design Fo	irth F	dition	McGraw
2. DC	Newvork 1992		untion, .	
3 DV	/S. Murty 'Transducers and Instrumentation' Second Edition	рні Г	earning	Pvt Ltd
J. D. Ne	w Delhi 2013		curning	I vi Liu
4. Ma	dhuchhanda Mitra, Samariit Sengupta, 'Programmable Logic Co	ntrolle	rs and I	ndustrial
Au	tomation An Introduction', Penram International Publishing (Indi	a) Pvt	Ltd., 20	09
5. Mi	ckell. P. Groover 'Automation, Production and computer inte	grated	manufa	acturing'
Pro	entice Hall of India, 1992			C
6. Pa	ranabis, D., 'Principles of Industrial Instrumentation', Second	Editio1	n Tata 🛛	McGraw
Hi	ll Publishing Co. Ltd New Delhi			
7. Ro	bert B. Northrop, 'Introduction to instrumentation and measureme	ents', C	CRC, Ta	ylor and
Fra	uncis 2005			
Reference	s:			
1. G.	K.McMillan, 'Process/Industrial Instrument and control and han	l book	' McGı	aw Hill,
Ne	w York,1999			
2. Mi	chael P .Lucas, 'Distributed Control system', Van Nastrant Rei	nhold	Compa	ny, New
York				
Course Plan				
				Sem.
Module	Contents	I	Iours	Exam
				Marks
	Introduction to Process Control - block diagram of process cont	ol		
J	loop, definition of elements. Sensor time response - first a	nd	6	15%
	second order responses.		5	2070
	Review of Transducers: Characteristics and Choice of transduc	er-		

	factors influencing choice of transducer		
П	Applications of Transducers Displace measurement: Resistance potentiometer, Capacitive and Inductive. Capacitive differential pressure measurement Torsional, shearing stress and rotating shaft Torque measurement using strain gauge. Flow measurement :Hotwire anemometer, constant resistance Constant current type Eddy current sensors, Variable reluctance tachometers Phase measurement :Analog and digital phase detectors Nano Instrumentation	8	15%
	FIRST INTERNAL EXAMINATION		
III	Signal conditioning circuits-Instrumentation amplifiers- Unbalanced bridge. Bridge linearization using op amp Precision rectifiers, Log amplifiers, Charge amplifiers, Isolation amplifier, Switched capacitor circuits, Phase sensitive detectors, Noise problem in instrumentation and its minimisation	7	15%
IV	Micro Electromechanical system (MEMS) Advantages and Applications, MEMS micro sensors and actuators, Manufacturing process: Bulk micro machining and surface micromachining, MEMS accelerometers Virtual instrumentation system: architecture of virtual instruments – Virtual instruments and traditional instruments – concepts of graphical programming	7	15%
	SECOND INTERNAL EXAMINATION		
V	Overview of Automation System - Architecture of Industrial Automation Systems, Different devices used in Automation Actuators, definition, types, selection. Pneumatic, Hydraulic, Electrical, Electro-Pneumatic and valves , shape memory alloys	7	20%
VI	Introduction to Sequence Control, PLCs - Working, Specifications of PLC Onboard/Inline/Remote IO's, Comparison of PLC & PC, Relay Ladder Logic- PLC Programming- realization of AND, OR logic, concept of latching, Introduction to Timer/Counters, Exercises based on Timers, Counters. Basic concepts of SCADA, DCS and CNC	7	20%
	END SEMESTER EXAM		

1-1

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	ode	Course Name	L-T-P - Credits	Ye Intro	ear of duction
EE405	5	Electrical System Design	3-1-0-4	2	2016
Prerequis	site :	Nil			
Course O To To ele To	bjec gain impa ectrica	tives the knowledge of acts and rules used for regulating the ele art sound knowledge in the design and estimation of low vo al installations. the knowledge of selection of distribution transformers and	ctrical suppl ltage and me d their instal	y in our co edium vol lations.	ountry. tage
• To ear	gain gain rthing	the knowledge of Earthing designs in different installation systems.	s and the sta	ndard dim	ensions of
Syllabus Electrical s Domestic I high rise b installation	syster Instal buildi is and	n design practices – general awareness of IS Codes, Ele lations, Motor Installations, 11 kV substation installations ng installations. Standby generator selection and their I their accessories. Types of earthing, lightning arresters, fir	ctricity Acts Cinema the nstallations. re fitting and	& Rules atre, audi Undergro lifts.	, NEC etc. torium and ound cable
Expected	outo	come	U		
The studen i. Kn ii. To dif	its wi now th o prep fferer	ll ne basic Rules and regulations in electrical installations. pare the schematic diagram, installation plan, quantity nt electrical installations.	of material	s and esti	mate for
Text Boo	k:	24 C			
1. J.	B. G	upta, A Course in Electrical Installation Estimating an	d Costing, S	S.K. Katai	ria &
So 2. K. edi 3. M.	 Sons; Reprint 2013 edition (2013). K. B. Raina, S. K. Bhattacharya, Electrical Design Estimating Costing, NEW AGE; Reprint edition (2010). M.K.Giridharan, Electrical Systems Design, M/s I K International Publishers, New Delhi, 2nd 				
edi	ition,	2016			
Data Boo M K Giridl Delhi, 201	k (A haran 1	, Electrical Systems Design Data Hand book, , M/s I K Int	ernational P	ublishers .	, New
Reference	es:				
1. Na 2. Re 3. S.I	tiona levan L.Up	I Electric Code, Bureau of Indian Standards publications, 1 It Indian Standard – specifications (IS – 732, IS – 746, IS – pal, Electrical Wiring Estimating & Costing, Khanna H	986. 3043, IS – 9 Publishers (20	900), etc. 008)	
		Course Plan			
Module		Contents		Hours	Sem. Exam Marks
Ι	Ge 2, 1 sup Reg Ene - sc volt	neral awareness of IS Codes (IS 3043, IS 732, IS 2675, IS S 2309), The Indian Electricity Act 1910, The Indian ply Act 1948, Indian Electricity Rules 1956, The gulatory Commission Act 1998, Electricity Act 2003, argy Efficiency (BEE) and its labeling. National Electric C cope and safety aspects applicable to low and medium age installations, Electric services in buildings, Classi ages, standards and specifications.	S 5216-P1- Electricity Electricity Bureau of ode (NEC) (domestic) fication of	8	15%
П	Safe Ger dwe calc boa	ety aspects applicable to low and medium voltage in heral aspects of the design of electrical installations for ellings (low and medium voltage installations)–conneculation, sub circuit determination, selection of main or rd, sub distribution board, MCB, ELCB, MCCB and cab	stallations. r domestic ected load listribution les for sub	10	15%

	circuits. Pre-commissioning tests of domestic installations.		
	FIRST INTERNAL EXAMINATION		
III	Medium and HV installations – selection of cables and cable glands, guidelines for cable installation in detail. Panel boards: LT & HT control panel boards. Installation of induction motors: Design of distribution systems with light power and motor loads. Design of automatic power factor correction (APFC) Panel. Selection and installation of transformers, switchgears and protective devices – Design of indoor and outdoor 11 kV substation upto 630 kVA.	10	15%
IV	Air-conditioning loads and its specifications. Energy conservation techniques. Selection of standby generator – installation and its protection. Introduction to Automatic Main Failure (AMF) System. Pre-commissioning tests of cables, transformers and generators.	8	15%
SECOND INTERNAL EXAMINATION			
V	Design of earthing system for an HT consumer, Dimensions and drawings of typical earth electrodes (1) Pipe Earthing, (2) Plate Earthing. Touch, Step and Transfer potentials at EHT Sub-Stations, Earth-mat, installations of special equipment like X-Ray, Neon-Sign, Basics of lightning arresters.	8	20%
VI	Design of illumination systems – Yard lighting, street lighting and flood lighting. Kerala Cinema Regulation Act – 1958, design and layout of installation for recreational or assembly buildings, cinema theatre and high rise building. Design of Electrical system related to firefighting, lifts and escalators.	10	20%

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course of	ode. Course Name	L-T-P - Credits	Y Intro	ear of
EE4 0	7 DIGITAL SIGNAL PROCESSING	3-0-0-3		2016
Prereau	isite : Nil	0000		
Course	Dhiectives			
course	• To impart knowledge about digital signal processing an	d its applica	ations in	
	engineering	. 105 upp1100		
Syllobus				
Introduct	ion to signals and systems Discrete Fourier Transforms Fa	st Fourier T	ransfor	me
Introduct	ion to FIR and IIR systems - FIR filter design - Finite word h	enoth effec	f_{s} in d^{2}	ins - ioital
Filters -	ntroduction to FDA Toolbox in MATLAB - Introduction to T	MS320 Far	nilv - D	esion &
Impleme	ntation and Filter Structures - Introduction to Code Composer	Studio	iiiiy D	csign œ
Expect	ad outcome	Studio		
The stud	ents will be able to:			
i.	Analyse DT systems with DFT			
ii.	Design digital filters IIR and FIR filters			
iii.	Analyse finite word length effects in signal processing			
iv.	Design filters using Matlab FDA tool box			
v.	Understand Digital Signal Controllers and their Application	s		
Text B	ooks:			
1	Alan V.Oppenheim, Ronald W. Schafer & Hohn. R.Back,	"Discrete 7	Time Sig	gnal
	Processing", Pearson Education, 2nd edition, 2005.			
2	Emmanuel.CIfeachor, & Barrie.W.Jervis, "Digital Signal	l Processing	g", Sec	ond editi
	on, Pearson Education / Prentice Hall, 2002.			
3	John G. Proakis & Dimitris G.Manolakis, "Digital Signal Pr	ocessing P	rinciple	s,
.	Algorithms & Applications", Fourth edition, Pearson education	ion / Prentic	e Hall,	2007
Referen				
	D. D. Voiduanathan, Multingta Sustana, & Eilter Banka, Processing	, PHI, 2006	~1~~~~~~~	1 al:ffa
2	NL 1002	ce Hall, Eng	giewood	ı chiis,
2	NJ, 1995. S.K. Mitra Digital Signal Processing A Computer Pased at	pproach Ta	to Ma C	Low Uill
5	1008	opioacii, ra		Jiawiiii,
	1998. ESIU.			
	Course Plan			q
Module	Contents	×	Hours	Sem. Exam Marks
	Introduction to signals and systems - Discrete Fourier tr	ansform:		
	Frequency domain sampling. Discrete Fourier transform (DF	T): DFT		
	pair, properties of DFT, frequency response analysis of sign	als using		
Ι	the DFT, circular convolution using DFT, linear filtering l	based on	7	15%
	DFT			
	Fast Fourier transform (FFT); Introduction, Radix -2 decin	nation in		
	time FFT algorithm, Radix-2 decimation in frequency algorithm	hm.		
	Introduction to FIR and IIR systems : Structures for realized	zation of		
п	discrete time systems - structures for FIR and IIR systems	– signal	7	15%
	flow graphs, direct-form, cascade-form, parallel form, lat	tice and	'	1.5 /0
	transposed structures and linear Phase FIR filters.			
	FIRST INTERNAL EXAMINATION			
III	Design of digital filters – general considerations – causality	y and its	7	15%

	implications, characteristics of practical frequency selective filters IIR filter design : Discrete time IIR filter (Butterworth and Chebyshev) from analog filter – IIR filter (LPF, HPF, BPF, BRF) design by Impulse Invariance, Bilinear transfor mation, Approximation of derivatives. filter design			
IV	FIR filter design : Structures of FIR filter- Linear phase FIR filter – Filter design using windowing techniques, frequency sampling techniques	7	15%	
	SECOND INTERNAL EXAMINATION			
 Finite word length effects in digital Filters : Fixed point and floating point number representations - Comparison - Truncation and Rounding errors - Quantization noise - derivation for quantization noise power - coefficient quantization error - Product quantization error - Overflow error - Round-off noise power - limit cycle oscillations due to product round-off and overflow errors - signal scaling Introduction to FDA Toolbox in MATLAB: Design of filters using FDA toolbox (Demo/Assignment only) 		7	20%	
VI	Introduction to TMS320 Family: Architecture, Implementation, C24x CPU Internal Bus Structure, Memory Central Processing unit, Memory and I/O Spaces, Overview of Memory and I/O Spaces, Program control Address Modes System Configuration and Interrupts clocks and low Power Modes Digital input / output (I/O), Assembly language Instruction, Instruction Set summary, Instruction Description, Accumulator, arithmetic and logic Instruction, Auxiliary Register and data page Pointer Instructions, TREG, PREG, and Multiply Instruction, Branch Instructions, Control Instructions I/O and Memory Instruction Design & Implementation and Filter Structures: MATLAB functions and TMS320 Implementation (Demo/Assignment only) Introduction to Code Composer Studio (Demo only)	7	20%	
	END SEMESTER EXAM			

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course code	Course Name	L-T-P - Credits	Yea Introd	ar of luction
EE409	Electrical Machine Design	3-0-0-3	20	16
Prerequis	ite: EE202 & EE205			
Course O	bjectives			
	• To impart knowledge on principles of design of static a	nd rotating	g electrica	1
	machines.			
	• To give a basic idea about computer aided design (CAI method.	D) and fini	te element	t
Syllabus Machine design, De aided desi	design basic principles, Heating and cooling of electrical esign of - Dc machine, Synchronous machine, Three phase gn, Finite element method.	machines induction	, Magneti 1 motor, C	c circuit computer
Expected	outcome			
• Th	e students will be able to design transformers, DC machines	, synchron	ous mach	ines and
inc	luction motors			
Text Bool	S: K Sayahaay " A Course in Electrical Machine Design" Dha	mm at usi	daana D	alla:
I. A.	K Sawnney, A Course in Electrical Machine Design, Dha	inpat rai <i>ai</i>	<i>ia</i> sons, D	eini.
2. K. 3. Ra 4. M.	M. Agarwal, Principles of Electrical Machine Design, F mamoorthy M, "Computer Aided Design of Electrical Equi N. O. Sadiku, "Numerical techniques in Electromagnetics Course Plan	pment", I ", CRC P	East-West ress Editic	S, Defini. Press. on-2001.
Module	Contents		Hours	Exam Marks
Ι	Principles of electrical machine design - General considerations - specifications of machines - types of encl types of ventilation - heating - short time rating - overload - temperature rise time curve - hot spot rating. Magnetic circuit calculation - calculation of field ampere to gap mmf - effect of slot and ventilating duct - active iron mmf for teeth - real and apparent flux densities - mmf per p Magnetic Leakage Calculation- Effects of Leakage. A Leakage –Components. Unbalanced Magnetic Pull-J aspects of unbalanced magnetic pull	design losures - capacity urns - air length - pole Armature Practical	8	15%
п	Design of transformers - single phase and three phase trans - distribution and power transformers - output equation design - window area - window space factor - overall dim of core. Windings – no. of turns - current density - co section - Cooling of transformers	sformers n - core nensions onductor	6	15%
	FIRST INTERNAL EXAMINATION			
III	Design of DC machines - output equation - specific lo choice of speed and no of poles - calculation of main dime choice of type of winding - number of slots - number of co per slot-current density - conductor section - slot insu	oading - ensions - nductors ilation -	8	15%

	END SEMESTER EXAM		
 Introduction to computer aided design. Analysis and synthesis methods -hybrid techniques. Introduction to Finite element method - historical background, applications, advantages. Study of new computer aided machine software using Finite Element Case study: Complete design of an ac machine –steps.(Assignment only) 		7	20%
V	Design of three phase induction motors - main dimensions - stator design - squirrel cage and slip ring types - number of stator and rotor slots - rotor bar current - design of rotor bar - end ring current - design of end ring - design of slip ring rotor winding.	7	20%
	SECOND INTERNAL EXAMINATION		
IV	Design of synchronous machines - specific loading - output equation - main dimensions - types of winding - number of turns - number of slots and slot design - field design for water wheel and turbo alternators - cooling of alternators.	6	15%
	 length of air gap - design of field winding - conductor cross section height of pole - design of inter pole - flux density under inter pole calculation of turns of inter polar winding – design of compensating winding – brushes and commutators. 		
			1

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules 1 & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course code.	Course Name	L-T-P - Credits	Year of Introduction
EE431	Power Systems Lab	0-0-3-1	2016
Prerequisite	EE306 Power System Analysis		
Course Object	etives		
 Impart 	practical knowledge about various power system equip	ment	
• Get a k setting	knowledge about the operation of power systems and the s, fault calculations etc.	e philosophy	behind the relay
• Simula	te the power system operations which will be helpful ir	the design	of power
system	s l'ennolour	L	1
List of Exer	cises/Experiments: (At least 12 experiments out of	of 18 exper	iments listed are
mandatory)			
1 Visit	a local Substation		
Aim:	To see firsthand apparatus that will be studied in this co	ourse and lea	rn about their
	role in operation and protection of power systems.		
2. Intro	duction to PSCAD/MATLAB/MIPOWER		
Aim:). Learn the usage of PSCAD/MATLAB/MIPOWER in	n modeling o	of ac circuits and
	plotting of results.	8	
	2). Understanding reactive power and power factor in si circuits.	ngle-phase	and three-phase
3. Trans	mission Line and Modeling.		
Aim	Obtaining the parameters of a 345 kV transmission line PSCAD/MATLAB/MIPOWER	e and model	ing it in
4. Power	Flow		
Aim: 7	Fo carry out power flow calculations.		
5. Trans	formers in Power Flow.		
Aim: 7	Fo look at the influence of including a tap-changer and a	<mark>a phase-s</mark> hift	er on power
f	low and bus voltages.		
6. Includ	ling an HVDC Transmission Line for Power Flow.		
Aim: 1	1). To include an HVDC transmission line and see its ef	fect on powe	er transfer on
	other transmission line.		
	2). To understand the operating principle of 12-pulse th	yristor conv	erters used in
	HVDC transmission systems.		
7. Powe	r Quality.		
Aim: '	To obtain the cur <mark>rent harmonics</mark> drawn by power electro	onics interfa	ce.
8. Synch	ronous Generators.		
Aim:	To obtain the effect of sudden short-circuit on a synchro	onous genera	ator output.
9. Volta	ge Regulation.		
Aim:	1). To study the effect of real and reactive powers on bu	s voltages.	

2). Understanding the operation of a Thyristor Controlled Reactor (TCR).

10. Transient Stability.

Aim: To simulate transient stability in a 3-bus example power system.

10. A. Making a Power System Reliable.

Aim: 1). To understand the planning/design process that goes into making a power system reliable.

11. AGC and Economic Dispatch.

Aim: Study the dynamic interaction between two control areas using *Simulink* modeling and economic dispatch.

12. Short Circuit Faults and Overloading of Transmission Lines.

Aim: To study the effect of short-circuit faults and overloading of transmission lines.

12.A. Fault Analysis with Relay Settings.

Aim : To study a power system with faults and determine relay settings based on calculated fault currents

13. Switching Over-Voltages and Modeling of Surge Arresters.

Aim. : To study over-voltages resulting from switching of transmission lines and limiting them by sing ZnO arresters

14. Power Factor improvement:

Aim : To calculate rating of capacitors for power factor correction for a load and verifying it experimentally.

15. Solar Power Calculations :

Aim : To calculate the rating of solar panel required for a given area on rooftop or for a given load

16. Demonstration of Ferranti Effect on a transmission line

- **17. Methods of Insulation Testing**
- 18. Modern Energy Meter calibration schemes

Expected outcome.

• Students will be able to design, setup and analyse various power systems and its simulations.

Text Book:

Ned Mohan, First Course in Power Systems, Wiley.

Course co	de Course Name	L-T-P -Credits	Ye	ear of	
EE461	Modern Operating Systems	3-0-0-3	2	016	
Prerequis	ite : Nil				
Course O	bjectives				
	• To impart the knowledge on the need	l and requirement of an inter	face betw	een Man	
	and Machine.				
	• To teach the features of operating sys	stems and the fundamental th	neory asso	ciated	
	with process, memory and file manage	gement components of opera	ting syste	ms.	
		OCICAI	8		
Svllabus :	IF(HN())	DUT AT			
Operating	System Structure, Operating system	n services, Process mana	gement,	Memory	
manageme	ent, File management, Storage structure, s	ecurity issues.		·	
	OTATVET				
Expected	l outcome.				
. Th	e students will be able to				
1. ;;	describe the general architecture of com	puters	toma		
11. iii	understand and analyse theory and impl	ementation of processes res	source cor	utrol	
	(concurrency etc.), physical and virtual r	nemory, scheduling, I/O and	files		
Text Boo	ok:	,			
Wi	lliam Stallings, Operating Systems: Intern	nals and Design Principles, 6	th Ed., Po	earson	
Ed	ucation				
Reference					
	utt G.J., Operating Systems, 3 rd Ed., Pea	irson Education.	Vilov		
2. S	anenhaum A S. Modern Operating System	bystelli Colleepts, o til Eu., v ms 3 rd Ed. Prentice Hall	vney		
5. 1	Cours	se Plan			
				Sem.	
Module	Contents		Hours	Exam Morelya	
	Introduction-Definition-Operating Sy	stem Structure- Operating		IVIALKS	
_	System Operations, Process Manageme	nt- Memory Management-	_	150/	
I	Storage Management- Protection ar	nd Security- Distributed	7	15%	
	Systems-				
	Computing Environments- Open Sou	rce Operating Systems-			
П	Operating-System Services- User Ope	erating-System Interface-	7	15%	
	System Calls- Types of System Calls- System	ystem Programs	,	10 / 0	
	FIRST INTERNAL F	Operations on Drassage			
	Threads Overview Multithreading M	operations on Processes-			
	Threading Issues - CPU Scheduling- B	asic Concepts- Scheduling			
III	Criteria- Scheduling Algorithms- Three	ad Scheduling- Multiple-	6	15%	
	Processor Scheduling- Process Synchron	nisation-			
	Memory Management-Swapping-	Contiguous Memory			
IV	Allocation- Paging Segmentation- V	irtual Memory- Demand	6	15%	
	Paging				

	SECOND INTERNAL EXAMINATION				
V	- File Management- File-System Interface- File Concept- Access Methods - Directory and Disk Structure - File-System Mounting - File Sharing- Protection- File-System Implementation- File- System Structure- File-System Implementation- Directory Implementation- Allocation Methods Free-Space Management - Efficiency and Performance	8	20%		
VI	Mass Storage Structure- Disk Scheduling- Disk Management- RAID Structure - Stable Storage Implementation- Protection and Security- Protection- Goals of Protection- Principles of Protection- Domain of Protection- Access Matrix Implementation of Access Matrix- Access Control- Revocation of Access Rights Security- The Security Problem -Program Threats- System and Network Threats	8	20%		
END SEMESTER EXAM					

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course	code	Course Name	L-T-P -Credits	Year o	of tion
EE4	62	Design of Digital Control Systems	3-0-0-3	2016	uon
Preregu	isite:	Nil			
Course	Obiec	tives			
• [Fo intro	oduce the need and concept of digital control	l system.		
• [Го ітра	art knowledge about different strategies ado	pted in the design of digital co	ntrollers.	
• [Го fami	liarize with the design of different types of	digital controllers.		
Syllabu	S	ADI ADDITI	LATANA		
Basic d	igital	control system-Pulse transfer function-	Digital PID controller design	gn- comp	ensator
design u	ising fi	requency response - compensator design	n using root locus - Direct d	lesign-me	thod of
Ragazzi	ni - De	ead-beat controller design - State space a	analysis and controller desig	n.	
Expecte	ed outo	come.	OT CITE		
On succe	essful co	ompletion, the students will have the ability	r to		
i.	desi	ign digital controllers.	0111		
ii.	ana	lyse discrete time system using state space i	methods.		
iii.	ana	lyse the stability of discrete time system.			
Text B	ooks:			NI 11 1 1	
-	I. Ben	jamin C. Kuo, Digital Control Systems, 2/e	e, Saunders College Publishing	, Philadel	phia,
	199	2. Dhiling H.T. Nagla Digital Control Syst	ama Prontico Hell Englewoo	d Cliffa N	Iony
4	2. C. I Iers	2. Fillips, II. T. Nagie, Digital Collubi Syst	enis, Flenuce-Han, Englewoo	u Chins, P	
	3. M.	Gonal, Digital Control and State Variable N	Aethods, Tata McGraw-Hill, 1	997	
4	1. Oga	ata K., Discrete-Time Control Systems, Pea	rson Education. Asia.		
Refere	nces:				
1	l. <mark>C</mark> or	stantine H. Houpis and Gary B. Lamon	t, Digital Control Systems	Theory, H	ardware
	Sof	tware, McGraw Hill Book Compan <mark>y</mark> , 1985.			
2	2. Iser	mann R., Digital Control Systems, <mark>F</mark> undam	entals, Deterministic Control,	V. I, 2/e,	Springer
	Ver	lag, 1989.			
	3. Lieg	gh J. R., Applied Digital Control, Rinchart	& Winston Inc., New Delhi.		
		Course	Plan		
					Sem.
Module		Contents		Hours	Exam Morke
	Basic	digital control system- Examples - ma	athematical model-70H and		Iviai KS
Ι	FOH	- choice of sampling rate-principles of disc	retization - Mapping between	7	15%
	s-dor	nain and z-domain	11 0		
	Pulse	e transfer function- Different configurations	s for the design- Modified z-		
II	trans	form-Time responses of discrete d	ata systems-Steady state	7	15%
	perfo	ormance.			
		FIRST INTERNAL EX	AMINATION		
ш	Digita	1 PID and Compensator Design: Design of	digital PID controller, Design	7	15%
	of lag,	lead compensators - based on frequency re	sponse method.	,	1070
TX 7	Digita	I Controller Design: Design based on roo	t locus in the z-plane, direct	7	1504
1 V	contro	I - Inethod of Ragazzini. Dead-beat	Tesponse design- Deadbeat	/	13%
	contro	SECOND INTERNAL E	XAMINATION		
	State	variable model of discrete data system	-Various canonical form		
. .,	repres	entations-controllable. observable. diag	is various canonical form		0.001
V	Conve	ersion from state space to transfer fund	ction -Computation of state		20%
	transit	ion matrix using Cayley-Hamilton theorem	and z-transform method		

VI	Controllability, Observability, stabilizability and reachability - Loss of controllability and observability due to sampling.Pole placement design using state feedback for SISO systems.	7	20%
	Digital state feedback controller design. Complete state and output		

QUESTION PAPER PATTERN:

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

Maximum Marks: 100

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

-510

2014
Course co	ode Course Name	L-T-P - Credits	Y	ear of	
EE463	Computer Aided Power Systems Analysis	3-0-0-3	Intr	2016	
Prerequis	ite: FF306 Power system analysis	0000			
Course O	hier EL5001 Ower system anarysis				
Course O	introduce computer applications in the analysis of power system				
• 10 • To	understand the solution methods and techniques used in power s	is	idiae		
• 10	understand the solution methods and techniques used in power s	system su	lules		
Syllaburg	ADI ADDITI VAL	AK	1		
Davalopm	ant of nativork matrices from Granh theory Formulation of R	us Impo	lanca	matricas	
Load Flor	w Analysis Optimal Power Flow Network fault calculations (Tontinger		manices-	
Dower sys	tems	Johninger	icy ai	larysis III	
Fynoetod		91 A.	-		
	outcome.	aathada u	and in	nouver	
	tem studies	liethous u	iseu m	power	
Sys Toxt Boo					
$1 \Delta r$	ns. thur R. Bergen, Vijay Vittal, Power Systems Analysis (English)	nd Editi	n Pe	arson	
	igher Education		JII, I C	ai 5011	
2 GI	Kusic Computer Aided Power System Analysis PHI 1989				
3 Iol	in I Grainger William D Stevenson Ir Power System Analysis	s Tata M	cGrav	v-Hill	
Sister	eries in Electrical and Computer Engineering	5, Iutu 11	coruv	11111	
4. M.	A. Pai, Computer Techniques in Power Systems Analysis, Tata l	McGraw-	Hill, S	Second	
e	lition 2005		, .		
Reference	es:	6			
1. I.J.	Nagrath and D.P.Kothari, "Modern Power System Analysis", Ta	ta McGra	w Hil	1. 1980	
2. J. I	Arriliga and N.R. Watson, Computer modelling of Electrical pow	er systen	ns, 2/e	, John	
Wi	ley, 2001	5	,	,	
3. LP	Singh, "Advanced Power System Analysis and Dynamics", 3/e.	New Ag	e Intl.	1996.	
4. Sta	gg and El Abiad, "Computer methods in Power system Analysis	", McGra	w Hil	l,1968.	
	Course Plan	1		·	
Module	Contents	H	ours	Sem.	
				Exam	
				Marks	
Ι	Overview of Graph theory -tree, co-tree and incidence ma	atrix,			
	Development of network matrices from Graph theoretic approact	h.	7	150/	
	Review of solution of Linear System of equations by Gauss Jo	rdan	/	15%	
	method, Gauss elimination, LDU factorization.				
II	Bus Reference Frame: Injections and Loads. Zbus and Y b	ous.			
	Formulation of Bus Impedance matrix for elements with	out	7	15%	
	Mutual Coupling.				
	FIRST INTERNAL EXAMINATION				
III	Inversion of YBUS for large systems using LDU factors, Tini	ney's			
	Optimal ordering.				
	Review of Gauss-Seidel Iteration using YBUS, Newton-Raphso	n	6	15%	
	method, Fast Decoupled Load Flow (FDLF)				
	DC load flow, Three-phase Load Flow.				
IV	Adjustment of network operating conditions, Optimal power f	low:			
	concepts, active/reactive power objectives (Economic dispatch,	MW	8	15%	
	and MVAr loss minimization) – applications- security constra	ined	0	1.5 /0	
	optimal power flow.				
	SECOND INTERNAL EXAMINATION				

V	Network fault calculations using ZBUS and YBUS Table of Factors, Algorithm for calculating system conditions after fault – three phase short circuit, three phase to ground, double line to ground, line to line and single line to ground fault.	7	20%
VI	Contingency analysis in Power systems : Contingency Calculations using ZBUS and YBUS Table of Factors. State estimation – least square and weighted least square estimation methods for linear systems.	7	20%

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de Course Name	L-T-P - Credits	Int	Year of	
EE464	Flexible AC Transmission Systems	3-0-0-3		2016	
Prereguis	ite: Nil			_010	
Course Objectives					
	• To introduce various Power Electronics con	ntrollers used in the P	ower Sy	stems for	
	the fast real and reactive power control.				
Syllabus Power flow shunt and compensat Converter control. U	v control - Benefits of FACTS -Transmission l series compensation .Reactive power con ors - Static Voltage and Phase Angle Reg type shunt and series Compensators - prir Inified Power Flow Controller	ine compensation. Un mpensation . Static gulators (TCVR &T nciple of operation,	comper shunt CPAR) configu	nsated line - and series Switching tration and	
Expected	outcome.	111			
The studer	its will be able to:				
• Ur rea	derstand various power electronics based FAC	CTS devices for the co	ontrol of	f active and	
• Ur	derstand the control schemes of various FACT	S devices.			
 Hingorani and L Gyugyi, "Understanding FACTS", IEEE Press, 2000 J Arriliga and N R Watson, "Computer modeling of Electrical Power Systems", Wiley, 2001 T J E Miller, "Reactive Power Control in Power Systems", John Wiley, 1982 K R Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International Publishers, 2007 Ned Mohan et. al "Power Electronics", John Wiley and Sons. Y.H. Song and A.T. Johns, "Flexible ac Transmission Systems (FACTS)", IEE Press, 1999 				Wiley, 2001 ew Age Press, 1999	
	Course Pla	n	1	G	
Module	Contents	I	Iours	Sem. Exam Marks	
I	Power flow in Power Systems – Steady-st problems in AC systems – Voltage regulat power flow control in Power Systems – co power unbalances in Power System Power flow control -Constraints of maximu line loading - Benefits of FACTS - Tr compensation: Compensation by a series cap at the midpoint of the line, Shunt Compensati the midpoint of the line -Phase angle control Reactive power compensation – shunt and ser	ate and dynamic tion and reactive ntrol of dynamic um transmission ansmission line acitor connected ion connected at ties compensation	7	15%	
Π	principles – reactive compensation at the distribution level – Static versus passive VAr (ransmission and Compensators	6	15%	
	FIRST INTERNAL EXAM	IINATION			
III	Static shunt Compensator - Object compensations, Methods of controllable V	tives of shunt AR generation -		15%	

	Variable impedance type VAR Generators -TCR , TSR, TSC, FC-TCR Principle of operation, configuration and control Static Series compensator - Objectives of series compensations, Variable impedance type series compensators - TCSC - Principle of operation, configuration and control.	8	
IV	Static Voltage and Phase Angle Regulators (TCVR & TCPAR): Objectives of Voltage and Phase angle regulators Thyristor controlled Voltage and Phase angle Regulators	7	15%
	SECOND INTERNAL EXAMINATION	And	
V	Switching converter type shunt Compensators Principle of operation, configuration and control, Comparison between SVC and STATCOM- Applications Switching converter type Series Compensators-(SSSC)- Principle of operation, configuration and control	7	20%
VI	Unified Power Flow Controller: Circuit Arrangement, Operation and control of UPFC General Equivalent Circuit for Facts Controllers (Shunt+series) Introduction to interline power flow controller.	7	20%
	END SEM <mark>E</mark> STER EXAM		

Maximum Marks: 100

Part A: 8 compulsory questions.

Exam Duration: 3Hourrs.

Estd.

One question from each module of Modules I - IV; and two each from Module V & VI. Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	ode	Course Name	L-T-P - Credits	Int	Year of roduction
EE465	;	Power Quality	3-0-0-3		2016
Duonocuio	:400 NI:1				
Course O	hiectives:				
• To	discuss various	power quality issues and different methods	to control t	hem.	
Syllabus:					
Power qua	ality issues in d	istribution systems, Need for power qualit	y monitori	ng, IE	EE guides,
standards	and recommen	ded practices, Modelling of networks a	nd compo	nents	under non
sinusoidal	conditions, Har	monic Analysis, Effects of Power System h	armonics	on Poy	wer System
Electromo	t and loads, H	larmonic elimination, Power Quality Ma	inagement	in S	mart Grid,
Electroma	Qutcome:	NHVED CITY	C		
• Th	e students will	be able to identify the power quality pro-	blems ca	uses a	nd suggest
sui	table mitigating	techniques.	, orenno, eu	ubeb u	ing suggest
Reference	es:	•			
1. An	igelo Baggini (E	d.) Handbook of Power Quality, Wiley, 2008	3		
2. C.	Sankaran, 'Powe	er Quality', CRC Press, 2002	1001		
3. G.	T. Heydt, <i>Powe</i>	r Quality', Stars in circle publication, Indian	a, 1991 Wilson 100'	-	
4. JOS	se Arillaga, Nevi	Independence of the provide the problems of the problem of th	wiley, 199	/ Pross 1	000
6 R	C Durgan M	F Me Granaghen H W Beaty 'Electric	cal Power	Syster	m Quality'
Mc	Graw-Hill	1. We Grundghen, H. W. Deuty, Dieerik	at 10wer	Syster	n Quanty ,
		C <mark>o</mark> urse Plan			
Module		Contents	Но	ours	Sem. Exam Marks
	Power quality	phenomenon - Sources and Effects of p	ower	6	
	quality problem	ns, types of power quality disturbances - Vo	ltage		
I	sag (or dip), Sy	vell, Transients, short duration voltage varia	tion,		
	distortion and	voltage flicker	Iorm		150/
	IEEE guide	ines standards and recommended pract	ices	7	1370
	Harmonics -n	nechanism of harmonic generation-harm	ionic		
т	indices (THD,	TIF, DIN, C – message weights - Power Qu	ality		
11	Costs Evaluati	on Harmonic sources – Switching dev	rices,		
	arcing devices	, saturable devices. Effects of Power Sy	stem		
	harmonics on F	Power System equipment and loads.			15%
	TT	FIRST INTERNAL EXAMINATION		5	150/
	transforms dia	systs - Fourier series and coefficients, the Fo	orm	3	15%
III	Window functi	on- numerical problems	onn,		
		in numerical problems.			
	Power qualit	y Monitoring considerations: Power	line	7	15%
IN /	disturbance an	alyzer, power quality measurement equipr	nent,		
11	harmonic spe	ctrum analyzer, flicker meters, disturb	ance		
	analyzer				
		SECOND INTERNAL EXAMINATION	I		

V	Harmonic elimination - Design and analysis of filters to reduce harmonic distortion – Power conditioners ,passive filter, active filter - shunt , series, hybrid filters,	7	20%
VI	Power Quality Management in Smart Grid: Power Quality in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid. Electromagnetic Interference (EMI -introduction - Frequency Classification - Electrical fields-Magnetic Fields - EMI Terminology - Power frequency fields - High frequency	10	20%

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd

Course co	de Course Name	L-T-P -Credits	Year Introdu	of ction
EE467	Nonlinear Control Systems	3-0-0-3	201	6
Prerequis	ite: Nil			
Course O	bjectives:			
• To	introduce the need and concept of nonlinear s	ystem.		
• To	impart knowledge about different strategies ad	dopted in the analysis o	f nonlinea	r
sys	stems.	$K \Delta I \Delta N$		
• To	familiarize with the design of different types of	of nonlinear controllers.	L	
Syllabus:		CICA.		
Character	stics of nonlinear systems- equilibrium poi	nts-phase plane analys	sis-periodi	c orbits-
stability (of nonlinear systems-Lyapunov stability-va	riable gradient metho	d-centre	manifold
theorem-c	autoome	Tzation-Exact Feedback	Innearizat	1011.
The stude	outcome ats will be able to			
i des	sign controllers for nonlinear systems			
ii an	alves the stability of nonlinear systems using y	arious approaches		
Text Bo	oks:			
1. A	lberto Isidori, "Nonlinear Control Systems: An	n Introduction", Springe	er-Verlag,	1985
2. H	assan K Khalil, Nonlinear Systems, Prentice -	Hall International (UK), 2002.	
3. Je	ean-Jacques E. Slotine and Weiping Li, "Appli	ed Nonlinear Control",	Prentice-I	Hall, NJ,
1	991.			
Reference	ces:			
1. N	I. Vidyasagar, "Nonlinear Systems Analysis", I	Prentice-Hall, India, 19	91,	
2. S	hankar Sastry, "Nonlinear System Analysis, St	ability and Control", Sp	oringer, 19	99.
	Course Pla	an		Som
Module	Contents	\cup	Hours	Exam Marks
	Introduction - Characteristics of nonlinear sy	stems - Classification		
Т	of equilibrium points- analysis of systems w	ith piecewise constant	7	15%
L	inputs using phase plane analysis.		7	1370
	Periodic orbits - limit cycles-Poincare-E	Bendixson criterion-		
II	Bendixson criterion. Existence and uniqu	ieness of solutions,	7	15%
	Lipschitz condition.			
	FIRST INTERNAL EAA	WIINA IION		
	local linearization and stability in the sm	all Direct method of		
Ш	- local integrization and stability in the sin	all- Direct linear and	7	15%
111	nonlinear systems – variable gradient method	l los inicas and	7	1370
	nommear systems variable gradient method			
	Centre manifold theorem - region of attraction	on - Feedback Control		
TT 7	and Feedback Stabilisation-Analysis of feed	lback systems- Circle	~	150/
IV	Criterion – Popov Criterion.		/	15%
	-			
	SECOND INTERNAL EX	AMINATION		

V	Feedback linearization- Design via linearization- stabilization - regulation via integral control- gain scheduling.	7	20%
VI	Exact Feedback Linearization - Input state linearization - input output linearization - state feedback control - stabilization - tracking - integral control.	7	20%

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Estd.

Course co	de Course Name	L-T-P -Credits	Year of Introduction
EE468	Computer Networks	3-0-0-3	2016
Prerequis	ite: Nil		
Course O	bjectives		
	• To impart the mode of operation of o	different types of comput	er networks that are
	used to interconnect a distributed con	nmunity of computers and	l various interfacing
	standards and protocols	VATAA	A
	ALADUUL	NALAN	
Syllabus Introductio MAC prot	on on Computer Networks, Network Har ocols, Network layer, Transport layer, App	dware, Protocol architec	ture, functionalities,
Expected	l Outcome.	0111	
The stude	ents will be able to:		
i.	Analyze the requirements for a given of	organizational structure a	and select the most
	appropriate networking architecture and to	echnologies.	
11.	Specify and identify deficiencies in existi	ng protocols, and then go	onto formulate new
• • •	and better protocols.		the fam of D have 1
111.	Analyze, specify and design the topolog	gical and routing strateg	les for an IP based
Text Roc	hetworking initastructure.		
 Jim k Pears Larry More 	Surose and Keith Ross, ``Computer Networ on Education, 2012 L. Peterson and Bruce S. Davie, ``Compu an Kaufmann, 5/e, 2011	rking: A Top-Down Appr 1ter Networks: A Systems	oach," 5th Edition, Approach,"
Reference	es:		
1. An 2 Fo	drew S, Computer Networks by Tanenbau	m, Prentice Hall of India,	New Delhi
2. 10 3. Ne	il Jenkins, Understanding Local area Netw	ork, SAMS Publishers	
4. Pet	er Hud <mark>son, Local area Netw</mark> orks by, Thom	nson Learning	
	Course	e Plan	
Module	Contents	Hours	Sem.ExamMarks
Ι	Introduction-Uses of Computer Network Hardware, Network Software, Reference	orks, Network ence Models, 6	
	Example Networks, 7012	12. 1	15%
	Network Standardization. The Med	ium Access	
TT	Control Sublayer- The Channel Allocat	ion Problem,	
11	Multiple Access Protocols, Ethernet, Wi	ireless LANs, /	
	Broadband wireless, Bluetooth.		15%
	FIRST INTERNAL E	XAMINATION	1570
	The Network Layer- Network Layer 1	Design Issues,	15%
III	Routing Algorithms, Congestion Contro Quality of Service, Internetworking, Layer in the Internet	ol Algorithms, 7 The Network	

IV	The Transport Layer- The Transport Service, Elements	7	15%
	of Transport Protocols, A Simple Transport Protocol,		
	SECOND INTERNAL EXAMINATIO	N	
V	The Internet Transport Protocols: UDP, The Internet	7	20%
	Transport Protocols: TCP, Performance Issues.		
	The Application Layer- DNS-The Domain Name	8	20%
VI	System, Electronic Mail, The World Wide Web,		
	Multimedia		

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	de Course Name	L-T-P -Credits	Year of Introduction	
EE469	Electric and Hybrid Vehicles	3-0-0-3	20	16
Prerequis	te : Nil			
Course O	ojectives			
• To	present a comprehensive overview of Electric ar	nd Hybrid Electric Vehicle	es	
Syllabus				
Introduction	to Hybrid Electric Vehicles, Conventional V	/ehicles, Hybrid Electric	Drive-train	ns, Electric
Propulsion	unit, Configuration and control of DC Motor dri	ves, Induction Motor driv	es, Perman	ent Magnet
Motor drive	es, switched reluctance motor, Energy Storage	Requirements in Hybrid	and Electric	c Vehicles,
Sizing the c	rive system, Design of a Hybrid Electric Vehicle	e, Energy Management S	trategies.	
Fynoetod	outcomo	AILA		
The studer	ts will be able to	CITY		
i.	Choose a suitable drive scheme for develor	oing an electric hybrid v	ehicle dep	ending on
	resources	5	-	U
ii.	Design and develop basic schemes of electr	ic vehicles and hybrid e	lectric veh	icles.
iii.	Choose proper energy storage systems for v	vehicle applications	1 * 1	· 1
1V.	Identify various communication protocols a	ind technologies used in	venicle ne	etworks.
1 EXT BOOK	: I Hussoin, Electric and Hybrid Vahieles: Desig	n Fundamentala CPC Pro	aa 2003	
L. 190	as Husseni, Electric and Hydrid Venicles. Desig	ii Fundamentais, CKC FIC	88, 2003	
1. Jan	es Larminie, John Lowry, Electric Vehicle Tech	mology Explained Wiley	2003	
2. Me	hrdad Ehsani, YimiGao, Sebastian E. Gay, Ali E	Emadi, Modern Electric, H	ybrid Elect	ric and
Fue	el Cell Vehicles: Fundamentals, Theory and Des	ign, CRC Press, 2004.	5	
	Course l	Plan		
Module	Contents		Hours	Sem. Exam Marks
Ι	Introduction to Hybrid Electric Vehicles: Hist vehicles, social and environmental importance vehicles, impact of modern drive-trains on ener Conventional Vehicles: Basics of vehicle per source characterization, transmission chara models to describe vehicle performance.	ory of hybrid and electric ce of hybrid and electric gy supplies. formance, vehicle power acteristics, mathematica	7	15%
II	Hybrid Electric Drive-trains: Basic conce introduction to various hybrid drive-train topol in hybrid drive-train topologies, fuel efficiency Electric Drive-trains: Basic concept of electric various electric drive-train topologies, power drive-train topologies, fuel efficiency analysis.	ept of hybrid traction logies, power flow contro analysis. c traction, introduction to flow control in electric	, 1 7	15%
	FIRST INTERNAL EX	AMINATION		
III	Electric Propulsion unit: Introduction to electhybrid and electric vehicles, Configuration a drives, Configuration and control of Induction I	ctric components used ir nd control of DC Motor Motor drives	7	15%
IV	Energy Storage: Introduction to Energy Storag and Electric Vehicles, Battery based energy sto Cell based energy storage and its analysis, I energy storage devices.	e Requirements in Hybrid rage and its analysis, Fue Hybridization of differen	1 1 1 7	15%
	SECOND INTERNAL EX	XAMINATION		
V	Sizing the drive system: Matching the electric combustion engine (ICE), Sizing the propulsio	machine and the interna n motor, sizing the power	l 7	20%

	electronics, selecting the energy storage technology,				
VI	Communications, supporting subsystems: In vehicle networks- CAN, Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies	7	20%		

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course	Course Name	L-T-P -	Year of			
code		Credits	Introduction			
EE372	Biomedical Instrumentation	3-0-0-3	2016			
Prerequisite: Nil						

Course Objectives

• To give a brief introduction to human physiology and various instrumentations system for measurement and analysis of physiological parameters.

Syllabus:

Development of biomedical instrumentation, Sources of bioelectric potentials, Bio potential electrodes, Electro-conduction system of the heart, Measurement of blood pressure, Measurement of heart sounds, Cardiac pacemakers, defibrillators, Electro encephalogram, Muscle response, Respiratory parameters, Therapeutic Equipments, Imaging Techniques, Instruments for clinical laboratory, Electrical safety, tele- medicine

Expected outcome.

Text Book:

- 1. J. G. Webster, Medical Instrumentation, Application and Design, John Wiley and Sons
- 2. L. Cromwell, F. J. Weibell and L. A. Pfeiffer, Biomedical Instrumentation Measurements, Pearson education, Delhi, 1990.

References:

- 1. R. S. Khandpur, Handbook of Biomedical Instrumentation, Tata Mc Graw Hill
- 2. J. J. Carr and J. M. Brown, Introduction to Biomedical Equipment Technology, Pearson Education

	Course Flan		
Module	Contents	Hours	Sem. Exam Marks
Ι	Development of biomedical instrumentation, biometrics, man instrument system components block diagram, physiological systems of the body (brief discussion on Heart and cardio vascular system, Anatomy of nervous system, Physiology of respiratory systems) problems encountered in biomedical measurements. Sources of bioelectric potentials – resting and action potentials - propagation of action potentials – bio electric potentials example (ECG, EEG, EMG, ERG, EOG,EGG etc.)	7	15%
п	Bio potential electrodes – theory – microelectrodes – skin surface electrodes – needle electrodes – biochemical transducers – transducers for biomedical applications. Electro-conduction system of the heart. Electro cardiography – electrodes and leads – Einthoven triangle, ECG read out devices, ECG machine – block diagram.	7	15%
	FIRST INTERNAL EXAMINATION		
III	Measurement of blood pressure – direct and indirect measurement – oscillometric measurement –ultrasonic method, measurement of blood flow and cardiac output, plethysmography –photo electric and impedance plethysmographs Measurement of heart sounds –phonocardiography.	7	15%

IV	Cardiac pacemakers – internal and external pacemakers, defibrillators. Electro encephalogram –neuronal communication – EEG measurement. Muscle response– Electromyogram (EMG) – Nerve Conduction velocity measurements- Electromyogram Measurements. Respiratory parameters – Spiro meter, pneumograph	7	15%
	SECOND INTERNAL EXAMINATION		
V	Ventilators, heart lung machine, hemodialysis, lithotripsy, infant incubators X-rays- principles of generation, uses of X-rays- diagnostic still picture, fluoroscopy, angiography, endoscopy, diathermy. Basic principle of computed tomography, magnetic resonance imaging system and nuclear medicine system – radiation therapy. Ultrasonic imaging system - introduction and basic principle.	8	20%
VI	Instruments for clinical laboratory – test on blood cells – chemical tests - Electrical safety– physiological effects of electric current – shock hazards from electrical equipment – method of accident prevention, introduction to tele- medicine.	6	20%

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5) = 40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

2014

Course co	Course code Course Name L-T-P - Credits			
EE474	ENERGY MANAGEMENT AND AUDI	TING 3-0-0-3	201	6
Prerequis	ite : Nil			
Course O	bjectives			
• To ma	enable the students to understand the concept of en nagement opportunities	nergy management and	d energy	
• To	understand the different methods used to control p	eak demand		
• To	know energy auditing procedure	ALAM		
• To	understand the different methods used for the ecor	nomic analysis of ener	gy projec	ets.
Syllabus General p controls - power man	rinciples of Energy management and Energy ma Energy management opportunities in electrical sy agement – Energy audit – cogeneration system – 1	anagement planning - stems and HVAC syst Economic analysis of	- Peak D tems – R energy pi	emand eactive rojects
Expected	outcome .			
• Th	e students will be able to understand the different 1	nethods used to reduc	e energy	
COI	sumption			
Data Bo	ok (Approved for use in the examination):			
 References: Albert Thumann, William J. Younger, Handbook of Energy Audits, CRC Press, 2003. Charles M. Gottschalk, Industrial energy conservation, John Wiley & Sons, 1996. Craig B. Smith, Energy management principles, Pergamon Press. D. Yogi Goswami, Frank Kreith, Energy Management and Conservation Handbook, CRC Press, 2007 G.G. Rajan, Optimizing energy efficiencies in industry -, Tata McGraw Hill, Pub. Co., 2001. IEEE recommended practice for energy management in industrial and commercial facilities, IEEE std 739 - 1995 (Bronze book). M Jayaraju and Premlet, Introduction to Energy Conservation And Management, Phasor Books, 2008 Paul O'Callaghan, Energy management, McGraw Hill Book Co. Wawe C. Turner, Energy management Hand Book - The Fairmount Press, Inc., 1997 				
				Sem.
Module	Contents		Hours	Exam Marilar
I	General principles of Energy management and planning. Peak Demand controls, Methodologies, Types Optimal Load scheduling-Case studies.	Energy management of Industrial Loads,	6	15%
II	Energy management opportunities in Lighting an Process and Electric heating, Case studies.	d Motors. Electrolytic	8	15%
	FIRST INTERNAL EXAMIN	ATION		
	Types of boilers, Combustion in boilers, Perf	ormances evaluation,		
III	Feed water treatment, Blow down, Energy conse	ervation opportunities		
	in boiler.			

	 Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Classification, General fuel economy measures in furnaces, Excess air, Heat Distribution, Temperature control, Draft control, Waste heat recovery. 			
IV	HVAC system: Coefficient of performance, Capacity, Factors affecting Refrigeration and Air conditioning system performance and savings opportunities. Classification and Advantages of Waste Heat Recovery system, analysis of waste heat recovery for Energy saving opportunities	7	15%	
	SECOND INTERNAL EXAMINATION			
V	Energy audit -Definition, Need, Types of energy audit, Energy audit Instruments. Cogeneration-Types and Schemes, Optimal operation of cogeneration plants- Case study. Computer aided energy management.	7	20%	
VI	Economic analysis methods-cash flow model, time value of money, evaluation of proposals, pay-back method, average rate of return method, internal rate of return method, present value method, life cycle costing approach, Case studies.	6	20%	
	END SEMESTER EXAM			

Estd.

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	Course code Course Name L-T-P - Credits			
EE474	ENERGY MANAGEMENT AND AUDI	TING 3-0-0-3	201	6
Prerequis	ite : Nil			
Course O	bjectives			
• To ma	enable the students to understand the concept of en nagement opportunities	nergy management and	d energy	
• To	understand the different methods used to control p	eak demand		
• To	know energy auditing procedure	ALAM		
• To	understand the different methods used for the econ	nomic analysis of ener	gy projec	ets.
Syllabus General p controls - power man	rinciples of Energy management and Energy ma Energy management opportunities in electrical sy agement – Energy audit – cogeneration system – 1	anagement planning - stems and HVAC syst Economic analysis of	- Peak D tems – R energy pi	emand eactive rojects
Expected	outcome .			
• Th	e students will be able to understand the different 1	nethods used to reduc	e energy	
COI	sumption			
Data Bo	ok (Approved for use in the examination):			
 References: Albert Thumann, William J. Younger, Handbook of Energy Audits, CRC Press, 2003. Charles M. Gottschalk, Industrial energy conservation, John Wiley & Sons, 1996. Craig B. Smith, Energy management principles, Pergamon Press. D. Yogi Goswami, Frank Kreith, Energy Management and Conservation Handbook, CRC Press, 2007 G.G. Rajan, Optimizing energy efficiencies in industry -, Tata McGraw Hill, Pub. Co., 2001. IEEE recommended practice for energy management in industrial and commercial facilities, IEEE std 739 - 1995 (Bronze book). M Jayaraju and Premlet, Introduction to Energy Conservation And Management, Phasor Books, 2008 Paul O'Callaghan, Energy management, McGraw Hill Book Co. Wawe C. Turner, Energy management Hand Book - The Fairmount Press, Inc., 1997 				
				Sem.
Module	Contents		Hours	Exam Marilar
I	General principles of Energy management and planning. Peak Demand controls, Methodologies, Types Optimal Load scheduling-Case studies.	Energy management of Industrial Loads,	6	15%
II	Energy management opportunities in Lighting an Process and Electric heating, Case studies.	d Motors. Electrolytic	8	15%
	FIRST INTERNAL EXAMIN	ATION		
	Types of boilers, Combustion in boilers, Perf	ormances evaluation,		
III	Feed water treatment, Blow down, Energy conse	ervation opportunities		
	in boiler.			

	 Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings. Classification, General fuel economy measures in furnaces, Excess air, Heat Distribution, Temperature control, Draft control, Waste heat recovery. 			
IV	HVAC system: Coefficient of performance, Capacity, Factors affecting Refrigeration and Air conditioning system performance and savings opportunities. Classification and Advantages of Waste Heat Recovery system, analysis of waste heat recovery for Energy saving opportunities	7	15%	
	SECOND INTERNAL EXAMINATION			
V	Energy audit -Definition, Need, Types of energy audit, Energy audit Instruments. Cogeneration-Types and Schemes, Optimal operation of cogeneration plants- Case study. Computer aided energy management.	7	20%	
VI	Economic analysis methods-cash flow model, time value of money, evaluation of proposals, pay-back method, average rate of return method, internal rate of return method, present value method, life cycle costing approach, Case studies.	6	20%	
	END SEMESTER EXAM			

Estd.

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course	code	Course Name	L-T-P -Credits	Ye	ar of
EE4	84	Control Systems	3-0-0-3	2	016
Prereat	uisite :	Nil			
Course	Objec	tives			
• '	To kno	w Mathematical modelling of physical sy	stems.		
• ′	To impa	art sound knowledge on different control ec	juipment.		
• ′	To anal	yse systems using mathematical model.	1 1		
Syllabu	IS	ADI ADDI II	IZATAA	A	
Linear 7	Гime In	variant systems: Open loop-and close	d loop control systems	, Transfe	er function:
Mechan	ical, El	ectromechanical systems. block diagra	m representation, signal	flow gra	ph. Control
system	compo	nents. Time domain analysis of con	trol systems. PID con	trollers,	Concept of
stability	, Frequ	ency domain analysis, Introduction to S	State space.		
Expec	ted out	come.			
The stu	udents v	vill be able to	JIII		
i.	Mo	del systems in transfer function and state s	pace domain and		
ii.	Ana	lyse stability of linear time invariant system	ns.		
Text Bo	ooks:				
1.	Katsuh	iko Ogata, "Modern Control Engineerir	ng", Fourth edition, Pear	son Educ	ation, New
	Delhi, 2	2002.			
2.	Nagara	th I.J. and Gopal M., "Control System I	Engineering", Wiley Eas	tern, Nev	v Delhi.
3.	Richard	I C. Dorf, Robert. H. Bishop, "Modern	Control Systems", Pears	on Educa	ation, New
	Delhi, 1	1 th Edition, 2007.	57 57		
Refere	ences:				
1.	Gibson	& Tutter, "Control System Component	ts", Mc Graw Hill.		
2.	Kuo B.	C., "Automatic Control Systems", Pren	tice Hall of India, New I	Delhi, six	th edition,
	1991.				-
3.	Norma	n S. Nise, "Control Systems Engineerin	g", 5th Edition, Wiley E	astern, 2	007.
		Course	Plan		
Module		Contents		Hours	Sem. Exam Marks
	Open	loop-and closed loop control systems:	Transfer function -T.F		
	of si	mple linear time invariant systems	- Mechanical and		
Ι	Electr	om <mark>echanical systems</mark> – Force volta	ge and force current	9	15%
	analo	gy - block diagram representation - blo	ck diagram reduction -		
	signal	flow graph - Mason's gain formula - cl	naracteristics equation.		
тт	Contr	ol system components: DC and AC se	ervo m <mark>otor – sync</mark> hro -	5	150/
11	magn	etic amplifier - gyroscope - stepper mot	or - Tacho meter.	5	13%
		FIRST INTERNAL EX	AMINATION		
	Time	domain analysis of control systems:	Transient and steady		
	state 1	esponses - test signals - time domain s	pecifications - first and		
III	secon	d order systems - impulse and step re	esponses - steady state	7	15%
	error	analysis - static error coefficient of	type 0,1,2 systems -		
	Dyna	mic error coefficients	•••		
	PID c	ontrollers, Concept of stability: stabilit	y of feedback system -		
IV	Routh	's stability criterion - Root locus	General rules for	7	15%
	constr	ructing Root loci - effect of addition of	poles and zeros.		
		SECOND INTERNAL E	XAMINATION		
	Freau	ency domain analysis: Introduction -	Bode plot -Polar plot-	-	6 001
V	gain r	nargin - phase margin	r ··· r···· r····	6	20%

VI	8	20%			
	eigenvectors, conversion of state space model to transfer function.				
	END SEMESTER EXAM				

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

Maximum Marks: 100

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course	e Course Name	L-T-P -Credits	I 4	Year of
	SOFT COMPLITING	3.0.0.3	Int	2016
Prerequie	site Nil	5-0-0-5		2010
Course O	hiertives			
Course o	• To provide the students with the concepts of a	soft computing te	chniaue	es such as
	neural networks, fuzzy systems, genetic algorith	ms	1	
Syllahus		T A A A		
Introducti	on To Soft Computing And Neural Networks . Fuzzy	Sets And Fuzzy L	ogic: F	uzzv
Sets, Neu	ro-Fuzzy Modelling, Machine Learning, Machine Le	earning Approach	to Knov	wledge
Acquisitio	on	(Δ)		_
Expecte	d outcome.	IC/IL		
The stud	ents will be able to get an idea on :	Y	0	
1. A	Artificial Intelligence, Various types of production sys	stems, characteristi	cs of pi	oduction
ii N	ystems. Jeural Networks, architecture, functions and various a	loorithms involve	4	
iii. F	Fuzzy Logic. Various fuzzy systems and their function	ngoritinns myörve. 18.	. .	
iv. C	Genetic algorithms, its applications and advances			
v. L	earn the unified and exact mathematical basis as well	l as the general print	nciples	of
v	arious soft computing techniques.			
T (D	•			
Text Bo	oks:	Laturarka Algorith	ng An	liantiana
1. J	nd Programming Techniques" Pearson Edn	Networks Algorithi	ns, Ap	plications,
2. J	vh-Shing Roger Jang. Chuen-Tsai Sun. Eiji M	lizutani. "Neuro-J	Fuzzv	and Soft
(Computing", Prentice-Hall of India,	,	2	
3. S	S.Y Kung, Digital Neural Network-, Prentice-Hall of	India		
Referen			. <mark>.</mark> . 01	
1. F	Amit Konar, Artificial Intelligence and Soft Com	puting, First Ed	ition,CI	KC Press,
2 1	David E. Goldberg "Genetic Algorithms in Sea	arch Optimizatio	n and	Machine
2. I	earning". Addison Wesley	aron, optimizatio	ii uiiu	Widefinite
3. (George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy	v Logic-Theory ar	nd App	lications".
F	Prentice Hall,		11	,
4. N	Aitchell Melanie, "An Introduction to Genetic Algorit	hm", Prentice Hal	l, 1998	
5. S	Simon Haykin, "Neural Networks: A Comprehensive	Foundation", Prent	tice Hal	1,
	Course Plan			Same
Module	Contents	H	lours	Sem. Exam Marks
	Introduction To Soft Computing And Neural	Networks :		
т	Evolution of Computing - Soft Computing Constitu	uents – From	7	15%
I	Conventional AI to Computational Intelligence	- Adaptive	/	1570
	Networks – Feed forward Networks – Supervised L	earning		
	Neural Networks – Radia Basis Function	Networks -		
II	Keinforcement Learning – Unsupervised Learn	ming ineural	7	15%
	Fuzzy Sets And Fuzzy Logic: Fuzzy Sets - Operation	ons on Fuzzy		

	Sets – Fuzzy Relations - Fuzzy Rules and Fuzzy Reasoning		
	FIRST INTERNAL EXAMINATION		
III	Fuzzy Inference Systems – Fuzzy Logic – Fuzzy Expert Systems – Fuzzy Decision Making Neuro-Fuzzy Modeling : Adaptive Neuro-Fuzzy Inference Systems – Coactive Neuro-Fuzzy Modeling – Classification and Regression Trees	7	15%
IV	Data Clustering Algorithms – Rulebase Structure Identification Neuro-Fuzzy Control.	7	15%
SECOND INTERNAL EXAMINATION			
V	Machine Learning : Machine Learning Techniques – Machine Learning Using Neural Nets – Genetic Algorithms (GA)	7	20%
VI Applications of GA in Machine Learning - Machine Learning Approach to Knowledge Acquisition. Support Vector Machines for Learning - Linear Learning Machines - Support Vector Classification - Support Vector Regression - Applications.		7	20%
	END SEMESTER EXAM		

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course co	ode Course Name	L-T-P - Credits	Yea Introd	r of luction		
EE488	3 INDUSTRIAL AUTOMATIO	N 3-0-0-3	20)16		
Prerequis	Prerequisite: Nil					
Course Objectives						
• To	explain the General function of Industrial	Automation				
• To	identify Practical Programmable Logic C	ontroller Applications				
• To	know Industrial Sensors and Robotics	TO A T A F A				
Syllabus	API ARINI	KALAM				
Types of a	motion actuators, electrical and mechanic	al sensors, ladder diagrams	, cascade	method,		
Huffman	method, Programmable Logic Con	rollers, Microcomputers:	interfaci	ng and		
programm	ing, Principles of Robotics and application	18				
Expected	d outcome .	CITV				
The studen	nts will	.3111				
1. 	Know about motion devices in automatic	n				
11. 	Know about various sensors in automatic	n 				
111.	Be able to draw ladder diagrams for app	lcations				
1V.	Be able to understand assembly language	programs				
V. Toxt Box	Know about Robotic components					
	assan Industrial Automation : Circuit De	sign and Components Wiley	7			
Reference	essen, industrial Automation . Circuit De	sign and components, whey	/			
1 Ba	rtelt Industrial Automated Systems Instru	mentation and Motion Cont	rol Ceno	age		
$2 M_1$	khonadyay et al. Industrial Instrumentati	on Control and Automation	Iaico Pi	ublishing		
2. Mit	use	on, control and Automation	, Jaico I (uunsiinig		
	Cours	e Plan	1	Som		
Module	Contents	U	Hours	Exam Marks		
	Motion Actuators: Types of Motion	and Motion Conversion,	-			
Ι	Electric Linear Actuators, Electric Rota	ry Actuators, Fluid-Power	6	15%		
	Linear Actuators, Fluid-Power Rotating	Actuators				
	Comment Discourse and a second					
	Limit quitches, photosoltais across wi	Electric Position sensors:				
	child consistive and mognetic provin	rasonic sensors, inductive				
II	and capacitive and magnetic proxi	inty sensors, priedinatic	6	15%		
	position sensors: mint valves, back-pres	sure sensors, coned spring				
	sensors. Lever, pressure, temperature and	now switches				
	EIDST INTEDNAL EVAMINATION					
	Electric Ladder Diagrams: Ladder d	agrams sequence charts				
	Ladder diagram design using sequence	charts, cascade method ·				
	single and multi path sequencing s	stems with and without				
III	sustained outputs. Huffman method: sec	uential systems, stable and	7	15%		
	unstable states, state assignment.	,,				
	, O					
TX 7	Programmable Controllers: PLC const	ruction, Programming the	7	150/		
IV	PLC, constructing ladder diagrams for P	LCs,	/	15%		

SECOND INTERNAL EXAMINATION						
V	Microcomputers : Microcomputers for control applications, architecture, computer interfacing, programmable interface adaptors, Ramping a step motor example.	8	20%			
VI	Robotics and Numerical Control : Basic Robot Definitions, Basic manipulator configurations, Numerical Control Systems, Robot Kinematics, Robot Grippers, Robot Sensors, Robot Programming, General Considerations for Robot Applications	8	20%			

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Course	Course Name	L-T-P -Credits	Year of					
code		2.0.0.2	Introduction					
EE492	Instrumentation Systems	3-0-0-3		2016				
Prerequisite: Nil								
Course O	bjectives		1					
• 10	introduce the measurement techniques for	r measurement of mechani	cal quanti	ties				
• To	introduce different types of electronic cir	cuits for measurements and	l their app	lications.				
Syllabus	ADI ADDI II	VATAN	A					
General	Concepts ,Generalised Configurations	and Functional Descript	tion of N	Measuring				
Instrumen	ts, Measuring Devices, Force and Torque	Measurements, Shaft Pow	er Measur	rements,				
Pressure	and Sound Measurements, Dynamic Te	sting of Pressure-Measur	ing Syste	ms, Flow				
Measurem	nent, Temperature Measurement, Bridge	Circuits , Amplifiers , Filt	ers, Integr	ration and				
Differenti	ation, Voltage-Indicating and Recording	Devices, Electromechanic	cal Servo	o type XT				
and XY R	ecorders.		_					
Expecte	d outcome.							
The stud	ents will have the							
1. A	bility to understand and analyze instrume	ntation systems.						
II. P	alter	in for various applications.	-					
Text Do	DK: Ernest O Doebelin and Dhanesh N Man	ik Magguramant Systems	Mc Graw	Hill 60				
Poforon	Effect of Doeberni and Difalesii N Mai	iik, Measurement Systems,	Wie Olaw	11111, 0e.				
1 Ne	ubert Instrument Transducers Oxford Ur	iversity Press						
1. IN 2. Tu	report and Hill Instrumentation for Engine	re and Scientists Oxford I	Inivorsity	Drogg				
2. 10	inter and Hin, instrumentation for Enginee		Jinversity	riess				
	Cours	se Plan		C				
Module	Contents		Hours	Sem. Exam				
			1100115	Marks				
	General Concepts : Need for M	leasurement Systems,						
	Classification of Types of Measurements	Applications		15%				
_	Generalised Configurations and Fund	ctional Description of	_					
I	Measuring Instruments : Functional Eler	nents of an Instrument,	7					
	Active and Passive Transducers, Analo	g and Digital Modes of						
	Operation ,Null and Deflection N	Aethods, Input-Output						
	Configurations of Instruments and Measu	urement Systems						
	Measuring Devices :	1 Charles Delation						
	Motion Measurements : Fundament	al Standards, Relative		15%				
	Translational and Rotational	Deletive Acceleration						
тт	Translational and Rotational,	Relative-Acceleration	7					
11	Force and Torque Measurements : Sta	ndards and calibration						
	Basic Methods of Eorce Measurement	nts Characteristics of						
	Elastic Force Transducers Torque M	easurement on Rotating						
	Shafts	casarement on Rotating						
FIRST INTERNAL EXAMINATION								
	Chaft Down Massurements . Shaft	t Power Measurements						
İ	Shall Power Measurements - Shall	a construction of the state of						
	(Dynamometers) Vibrating-Wire Force	Transducers						
ш	(Dynamometers), Vibrating-Wire Force Pressure and Sound Measurements: Sta	Transducers						
III	(Dynamometers), Vibrating-Wire Force Pressure and Sound Measurements: Sta Basic Methods of Pressure Measurement	Transducers andards and Calibration , ents. Deadweight Gages	7	15%				

	Other Resonant Transducers						
IV	Dynamic Testing of Pressure-Measuring Systems, High Pressure Measurement, Low Pressure(Vacuum) Measurement, Sound Measurements Flow Measurement : Local Flow Velocity, Magnitude and Direction, Gross Volume Flow Rate	7	15%				
SECOND INTERNAL EXAMINATION							
v	Temperature Measurement : Standards and Calibration , Thermal-Expansion Methods ,Thermoelectric Sensors (Thermocouples), Electric-Resistance Sensors, Junction Semiconductor Sensors ,Digital Thermometers ,Radiation Methods	1 7	20%				
VI	BridgeCircuitsAmplifiersFilters,IntegrationandDifferentiation	7	20%				

QUESTION PAPER PATTERN:

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.