Kerala Technological University

Cluster 4: Kottayam

M. Tech Program in Computer Science & Engineering (Computer & Information Science)

Scheme of Instruction and Syllabus: 2015 Admissions

Cluster Centre **Rajiv Gandhi Institute of Technology, Kottayam** July 2015

Kerala Technological University

(Kottayam Cluster)

M. Tech Program in Computer and Information Science

Scheme of Instruction

Credit requirements	: 67 (22+19+14+12)				
Normal Duration	: Regular: 4 semesters;	External Registration: 6 semesters			
Maximum duration	: Regular: 6 semesters;	External Registration: 7 semesters			
Courses: Core Courses:	Either 4 or 3 credit cours	ses; Elective courses: All of 3 credits			
Allotment of credits and examination scheme:-					

Semester 1 (Credits: 22)

Exam Course No: Slot		ourse No: Name	L- T - P	Interna I Marks	End Semester Exam		Credit s
					Mark s	Dura tion (hrs)	
A	04 CS 6201	Mathematical Concepts of Computer Science	4-0-0	40	60	3	4
В	04 CS 6203	Modern Information Retrieval	4-0-0	40	60	3	4
С	04 CS 6205	Advanced Digital Image processing	3-0-0	40	60	3	3
D	04 CS 6207	Advanced Computer Networks	3-0-0	40	60	3	3
Е	04 CS 6XXX*	Elective - I	3-0-0	40	60	3	3
	04 GN 6001	Research Methodology	0-2-0	100	0	0	2
	04 CS 6291	Seminar - I	0-0-2	100	0	0	2
	04 CS 6293	Image Processing Lab	0-0-2	100	0	0	1
		Total	23				22

*See List of Electives-I for slot E

List of Elective - I Courses

Exam Slot	Course No.	Course Name
E	04 CS 6204	Machine Learning
E	04 CS 6211	Intelligent Systems
E	04 CS 6213	Algorithms & Complexity
E	04 CS 6215	Virtualized Systems

2 Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

M. Tech Program in Computer and Information Science

Semester 2 (Credits: 19)

Exam Slot	Course No:	Name	L- T - P	Interna I Marks	End Semester Exam		Credit s
					Mark s	Dura tion (hrs)	
А	04 CS 6202	Advanced Data Mining	4-0-0	40	60	3	4
В	04 CS 6204	Natural Language Processing	3-0-0	40	60	3	3
С	04 CS 6206	Mathematics of Cryptography	3-0-0	40	60	3	3
D	04 EE 6XXX*	Elective - II	3-0-0	40	60	3	3
E	04 EE 6XXX^	Elective - III	3-0-0	40	60	3	3
	04 CS 6292	Mini Project	0-0-4	100	0	0	2
	04 CS 6294	Network Simulation Lab	0-0-2	100	0	0	1
		Total	22				19

*See List of Electives -II for slot D for slot E

^See List of Electives -III

List of Elective - II Courses

Exam	Course	Course Name
Slot	Code	
D	04 CS 6208	Image Analysis and Recognition
D	04 CS 6212	Adhoc Networks
D	04 CS 6214	Cloud Computing
D	04 CS 6216	Parallel Computer Architecture

List of Elective - III Courses

Exam	Course	Course Name
Slot	Code	
E	04 CS 6218	Bioinformatics
E	04 CS 6222	Distributed Operating Systems
E	04 CS 6224	Pattern Recognition
E	04 CS 6226	Agent based Computing

Summer Break

Exam Slot	Course No:	Name	L- T - P	Internal Marks	End Semester Exam		Credits
					Marks	(hr s)	-
NA	04 CS 7290	Industrial Training	0-0-4	NA	NA	NA	Pass /Fail
		Тс	otal 4				0

3 *Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science*

M. Tech Program in Computer and Information Science

Semester 3 (Credits: 14)

Exam Slot	Course No:	Name		L- T - P	Interna I Marks	End Semester Exam		Credit s
						Mark s	Dura tion (hrs)	
А	04 CS 7XXX*	Elective - IV		3-0-0	40	60	3	3
В	04 CS 7XXX^	Elective - V		3-0-0	40	60	3	3
	04 CS 7291	Seminar - II		0-0-2	100	0	0	2
	04 CS 7293	Project (Phase - I)		0-0-12	50	0	0	6
		Т	otal	20				14
*See Lis	t of Electives-IV j	for slot A	<u>,</u>			^See Li	ist of Ele	ectives-V

*See List of Electives-IV for slot A for slot B

List of Elective - IV Courses

Exam	Course Code	Course Name			
Slot					
А	04 CS 7201	Computational Linguistics			
А	04 CS 7203	Advanced Compiler Design			
А	04 CS 7205	Human Computer Interaction			
А	04 CS 7207	Advanced Database Management System			

List of Elective - V Courses

Exam Slot	Course Code	Course Name			
В	04 CS 7204	Big Data Analytics			
В	04 CS 7211	Semantic Web			
В	04 CS 7213	Object Oriented Software Engineering			
В	04 CS 7215	Mobile Communication Networks			

Semester 4 (Credits: 12)

Exam Slot	Course No:	Name		L- T - P	Interna I Marks	External Evaluation Marks		Credit s
NA	04 CS 7294	Project (Phase -II)		0-0-21	70	30	NA	12
			Total	21				12

Total: 67

4 *Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science*

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 6201	Mathematical Concepts of Computer Science	4-0-0: 4	2015

Course Objectives:

- To understand vectors and matrices
- To study mathematical logic and detailed models of computability
- To study graph theory and its applications
- To understand application of probability

Syllabus

It introduces linear algebra, optimization problem, logic, computability, graph theory and probability. The course is intended to cover the main aspects which are useful in studying, describing and modelling of objects and problems in the context of computer algorithms and programming languages.

Course Outcome:

The students will be able to understand the concept of linear algebra, logic, computability, graph theory and probability.

Text Books:

- 1. Discrete Mathematical Structures for Computer Science (1st Ed): Bernard Kolman, Robert Busby, PHI (1984)
- 2. Linear Algebra and Probability for Computer Science Applications (1st Ed): Ernest Davis, CRC Press (2012)

- 1. Graph Theory and Its Applications (2nd Ed): Jonathan L. Gross and Jay Yellen, CRC (2005)
- 2. Schaum's Outline of Probability, Random Variables, and Random Processes (2nd Ed): Hwei Hsu, McGraw-Hill (2010)

COURSE CODE:	COURSE TITLE	CRI	DITS
04 CS 6201	MATHEMATICAL CONCEPTS FOR COMPUTER SCIENCE	4-0-0:4	
	MODULES		Sem. Exam Marks (%)
MODULE 1: Linear Algebra: Vector spaces—Definition and examples, subspaces, linear independence, basis, dimension, Orthogonality, Eigenvalues and vectors, Singular Value Decomposition, Vector and matrix norms.		10	15
MODULE 2:Uncc solving methods	onstrained and constrained optimization problem	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		<u> </u>
-	c: Propositional logic, Truth tables, Tautologies, system, Predicate logic, Temporal logic.	8	15
MODULE 4:Turing languages, Decida Complexity classe complexity meas completeness	8	15	
points, cycles – Ha graphs - isomorph graphs, Tree, diffe – BFS, DFS E algori	definitions of Graphs, connectivity of a graph, cut amiltonian graphs – sub graphs – s panning sub nic graphs - matrix representation of graphs, Bipartite erent characterization of trees - Algorithms on graphs Dijkstra's algorithm for shortest path, Floyd's thm for all pairs of shortest paths, Kruskal's and or minimum spanning tree	12	20
MODULE 6: Rand variables, Probab and Deviations, d Functions of ran Stochastic proce queuing theory.	12	20	
	END SEMESTER EXAM		

⁶ *Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science*

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 6203	MODERN INFORMATION RETRIEVAL	4-0-0:4	2015

Course Objectives:

- Gain practical experience building simple, but true-to-practice retrieval software.
- Appreciate topics in the broad area of information retrieval, including evaluation, classification, cross-language retrieval, and computational linguistics.

Syllabus

To understand the underlying theories and algorithms of advanced information retrieval systems and to introduce the methodology for the design and evaluation of information retrieval systems. Also covers the major types of information retrieval systems models, the different theoretical foundations underlying these systems, and the methods and measures that can be used to evaluate them.

Course Outcome:

The students will learn the underlying concepts of information retrieval and computer based web search tools.

Text Books:

- 1. Ricardo Baexa-Yates and BerthierRibeiro-Neto, "Modern Information Retrieval", Addison Wesley Longman, 1999
- 2. Bing Liu, Web DataMining: Exploring Hyperlinks, Contents, and Usage Data, © Springer-Verlag Berlin Heidelberg 2007.

- 1. Gerald J. Kowalski, Mark T. Maybury."Information storage and retrieval systems: Theoryand Implementation" Second Edition, Kluwer Academic Publishers, New York, 2002
- 2. Zdravko Markov and Daniel T. Larose, Data Mining The Web: Uncovering Patterns InWeb Content, Structure, and Usage, Wiley-Interscience: A John Wiley & Sons, Inc., Publication, 2007)

COURSE CODE:	COURSE TITLE	CRED	DITS
04 CS 6203	MODERN INFORMATION RETRIEVAL	4-0-	0:4
	MODULES	Contac t Hours	Sem. Exa m Mark s (%)
	nation retrieval and web search: Web Challenges-Web Search rectories, Semantic Web, Crawling the Web-Web Basics, Web	6	15
the HTML Structu	Considerations, Relevance Ranking, Advanced Text Search, Using re in Keyword Search. nique: Search Statements and Binding, Similarity Measures and	12	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
Resemblance.Info	arity Search-Cosine Similarity, Jaccard Similarity, Document ormation Retrieval Models & Pre-processing: Information - Boolean Model, Vector Space Model, Statistical Language	8	15
	ed Index and Its Compression: Inverted Index-Search Using an dex Construction, Index Compression	8	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
	ance Feedback, Evaluation Measures, Text and Web Page Pre- word Removal, Stemming, Other Pre-Processing Tasks, on	10	20
	t Semantic Indexing, Singular Value Decomposition, Query and ng Algorithms – PageRank, Timed PageRank , HITS, Strengths of HITS.	12	20
	END SEMESTER EXAM		

⁸ Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 6205	ADVANCED DIGITAL IMAGE PROCESSING	3-0-0:3	2015

Pre-requisites: Concepts of Digital Image Processing

Course Objectives:

- To understand processing of digital images
- To familiarize different mathematical structures
- To study detailed image transforms
- To study image segmentation
- To understand wavelets and morphological applications.

Syllabus

Fundamentals of Image Processing:- Image Acquisition, Image Model, Sampling, Quantization. Histogram: Definition, decision of contrast based on histogram, operations based on histograms like image stretching, image sliding. Basic intensity transformation functions, Spatial filtering, smoothing and sharpening filters. Image Transforms:- Fourier Transform of sampled functions, DFT of one and two variables. WALSH and, HADAMARD Transforms. Filtering in the frequency domain: smoothing and sharpening filters. Image Segmentation:- Definition, characteristics of segmentation. Detection of Discontinuities, Thresholding, Pixel based segmentation method. Wavelets:- Image pyramids, subband coding, The Haar transform, wavelet transform in one and two dimensions, wavelet packets.

Course Outcome:

Students will be able to perform Image enhancement and Transforms.

Text Books:

1. Digital Image Processing , Rafael C. Gonzalez and Richard E. Woods 3rd edition, PHI Learning, 2008

- 1. Fundamentals of Electronic Image Processing by Arthyr R Weeks, Jr. (PHI)
- 2. Image processing, Analysis, and Machine vision by Milan SonkavaclanHalavac Roger Boyle, Vikas Publishing House.
- 3. Sonka M, Vaclav Hlavac, and Roger Boyle, Image Processing, Analysis and Machine Vision, Brooks Cole, 3rd ed, 2008
- 4. Jain A K, Fundamentals of Digital Image Processing, Prentice-Hall India, 2007.

COURSE CODE:	COURSE TITLE	CRED	DITS
04 CS 6205	Advanced Digital Image Processing	3-0-0:3	
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1:Funda	mentals of Image Processing:- Image Acquisition, Image		
Model, Sampling	, Quantization, Relationship between pixels, distance	6	15
measures, connec	tivity, Image Geometry		
MODULE 2:Histog	ram: Definition, decision of contrast based on histogram,		
•	operations based on histograms like image stretching, image sliding. Basic intensity transformation functions, Spatial filtering, smoothing and sharpening filters		
	INTERNAL TEST 1 (MODULE 1 & 2)		<u> </u>
DFT of one and	e Transforms:- Fourier Transform of sampled functions, two variables. WALSH and, HADAMARD Transforms. quency domain: smoothing and sharpening filters	8	15
MODULE 4:Image restoration: noise models, restoration in the presence of noise only, periodic noise reduction.		6	15
segmentation n segmentation by aggregation, histo MODULE 6:Wave	etection of Discontinuities, Thresholding, Pixel based nethod. Region based segmentation methods – y pixel aggregation, segmentation by sub region ogram based segmentation, spilt and merge technique. elets:- Image pyramids, subband coding, The Haar	8	20
Morphology:- Dila Connected comp	transform, wavelet transform in one and two dimensions, wavelet packets. Morphology:- Dilation, Erosion, Opening, closing, Hit-and-Miss transform, Connected components, thinning, Thickening, skeletons, Application of Morphology in image processing. END SEMESTER EXAM		

¹⁰ Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 6207	Advanced Computer Networks	3-0-0:3	2015

Pre-requisites: Concepts of computer networks

Course Objectives:

- To understand analog and digital transmission.
- To understand TCP/IP Protocol architecture
- To understand TCP features and applications
- To understand HTTP architecture

Syllabus

Description on transmission media, Analog and digital transmission, Introduction to TCP/IP protocol suite, Protocols, detailed description of different layers of TCP/IP Protocol architecture and associated protocols.

Course Outcome:

The students will learn the underlying mechanisms used for analog& digital data transmission & protocols associated with the computer networks.

Text Books:

- 1. William Stallings, "Data and Computer Communications", Pearson Education.
- 2. Kurose and Ross, "Computer Networks A systems approach", Pearson Education.

References:

1.Behrouz A Forouzan, "TCP/IP Protocol Suite", Tata McGraw-Hill.

2. Peterson and Davie, "Computer Networks A systems approach", Elsevier.

3. Behurouz A Forouzan, "Data Communications & Networking", 4th edition, McGraw-Hill.

COURSE CODE:	COURSE TITLE	CRE	DITS
04 CS 6207	Advanced Computer Networks	3-0-0:3	
	MODULES	Contact Hours	Sem. Exam Marks (%)
Transmission, Tra Media- Wired	ical Layer: Data Transmission- Analog and Digital nsmission Impairments, Channel Capacity. Transmission Transmission, Wireless Transmission, Wireless -of Sight Transmission, Signal Encoding Techniques.	7	15
	link layer: TCP/IP Protocol Architecture, Framing, sion, Ethernet (802.3) and Token Ring (802.5)	5	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
Sub netting / Su	ork Layer: Connecting Devices. ARP, RARP. IP Address - ber netting, Packet Forwarding with Classful / Classless gram Fragmentation, Components in IP software, Private	6	15
MODULE 4: Routing Protocols -Distance Vector Routing-RIP, Link-State Routing-OSPF			15
operation. TCP- T TCP state transit Congestion contr	port Layer: UDP- Port Addressing, UDP datagram, UDP CP services and features, TCP segment, TCP connection, ions, TCP module's algorithm, Flow and Error control, ol, TCP Timers. SCTP- SCTP services and features, Packet nection, State Transitions, Flow and Error control.	10	20
MODULE 6:Appli Resolution, DNS Address allocatio Time Data Transfe	10	20	

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 6204	MACHINE LEARNING	3-0-0: 3	2015

Pre-requisites: Concepts of Artificial Neural Networks

Course Objectives:

- To illustrate the design of a learning system.
- To impart a basic knowledge about the learning algorithms and theory that form the foundation of machine learning

Syllabus

Introduction: Well defined learning problems, Designing a Learning System, Issues in Machine Learning. The Concept Learning Task. General-to-specific ordering of Hypotheses, Find-S, List then eliminate algorithm, Candidate elimination algorithm, Inductive bias. ARTIFICIAL NEURAL NETWORKS: Perceptrons, Gradient descent and the Delta rule, Adaline, Multilayer networks, Backpropagation Algorithm, Convergence, Generalization. BAYESIAN LEARNING: Bayes theorem, Concept learning, Bayes Optimal Classifier. Computational Learning Theory: Sample Complexity for Finite Hypothesis spaces, Sample Complexity for Infinite Hypothesis spaces

Course outcome:

Student will be able to learn Computational Learning Theory and classification

Text Books:

1. Machine Learning, Tom.M.Mitchell, McGraw Hill International Edition 1 edition 1997.

- 1. Introduction to Machine Learning, EthernAlpaydin, Eastern Economy Edition, Prentice Hall of India, 2005.
- 2. Pattern Recognition and Machine Lerning -Christopher M Bishop Springer
- 3. A probabilistic perspective Kevin P Murphy Machine Learning- MIT Press
- 4. Neural Networks and Learning Machines –Simon S Haykin Prentice Hall of India

COURSE CODE:	COURSE TITLE:	CRED	DITS	
04 CS 6204	04 CS 6204 Machine Learning		0:3	
	MODULES	Contact Hours	Sem. Exam Marks (%)	
Learning System, General-to-specifi	roduction: Well defined learning problems, Designing a Issues in Machine Learning. The Concept Learning Task. ic ordering of Hypotheses, Find-S, List then eliminate ate elimination algorithm, Inductive bias.	6	15	
MODULE: 2 - algorithm,Inductiv	MODULE: 2 - Decision Tree Learning: Decision tree learning algorithm, Inductive bias, Issues in Decision tree learning			
	INTERNAL TEST 1 (MODULE 1 & 2)			
	icial Neural Networks: Perceptrons, Gradient descent and daline, Multilayer networks, Backpropagation Algorithm, neralization.	8	15	
MODULE: 4 - Evaluating Hypotheses: Estimating Hypotheses Accuracy, Basics of sampling Theory, Comparing Learning Algorithms. BAYESIAN LEARNING: Bayes theorem, Concept learning		6	15	
	INTERNAL TEST 2 (MODULE 3 & 4)			
belief networks,	ves Optimal Classifier. Naïve Bayes classifier, Bayesian EM algorithm. Computational Learning Theory: Sample inite Hypothesis spaces, Sample Complexity for Infinite s.	7	20	
Learning, k-Near	e Mistake Bound Model of Learning; Instance-Based est Neighbor Learning, Locally Weighted Regression, ion networks, Case based learning END SEMESTER EXAM	7	20	
	EIND JEIVIEJIEN ENAIVI			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 6211	INTELLIGENT SYSTEMS	3-0-0: 3	2015

Pre-requisites: Concepts of Artificial Intelligence

Course Objectives:

- Learn the concepts of Agents
- Explain the basic knowledge representation, problem solving, and learning methods of Artificial Intelligence
- Assess the applicability, strengths, and weaknesses of the basic knowledge representation,
- problem solving, and learning methods in solving particular engineering problems
- Develop intelligent systems by assembling solutions to concrete computational problems
- Understand the role of knowledge representation, problem solving, and learning in intelligentsystem engineering

Syllabus

Introduction to Agents, uninformed and informed search strategies, Knowledge representations and reasoning, Learning techniques, Introduction to Neural Networks.

Course outcome:

The students will learn general and specialized knowledge representations and reasoning mechanisms, problem solving and search algorithms, and machine learning techniques.

Text Books:

5. Artificial Intelligence: A Modern Approach (3rd Ed): Stuart Russell and Peter Norvig, PHI (2004).

- 1. Artificial Intelligence: A Systems Approach (1st Ed): M. Tim Jones, Jones and Bartlett Publishers(2008)
- 2. Software Agents: Jeffrey M.Bradshaw, AAAI Press (1997)

COURSE CODE:	COURSE TITLE:	CRE	DITS
04 CS 6211	04 CS 6211 Intelligent Systems)-0:3
MODULES			Sem. Exam Marks (%)
	rtificial Intelligence – Introduction -Intelligent agents - onments - Structure of agents - Agent types - Problem	5	15
solving agents		-	
	ninformed Search strategies – DFS, BFS, Depth limited leepening depth first search, Bidirectional Search	4	15
INTERNAL TEST 1 (MODULE 1 & 2)			
MODULE: 3 - Informed Search and Exploration – Informed search strategies – Heuristics Function - Local Search Algorithms and Optimization Problems - Online Search Agents			15
MODULE: 4 - Constraint Satisfaction Problems - Adversarial Search - The minimax algorithm - Alpha-Beta Pruning		6	15
	INTERNAL TEST 2 (MODULE 3 & 4)	1	
MODULE: 5 -Knowledge and reasoning - Knowledge Based Agents - First order logic – Reasoning - Backward chaining – Resolution - Knowledge representation - Handling uncertain knowledge - Reasoning under uncertainty – Statistical Reasoning			20
MODULE: 6 -Learning - forms of learning - Inductive learning - Learning decision trees- Explanation based learning - Statistical learning - Instance based learning - Reinforcement learning.Neural networks – Learning with Backpropogation			20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 6213	ALGORITHMS & COMPLEXITY	3-0-0: 3	2015

Pre-requisites: Basic concepts of algorithms and data structures

Course Objectives:

- To know problem solving techniques
- To understand techniques of randomized algorithms
- To understand NP completeness and approximation algorithms

Syllabus

The syllabus covers the asymptotic notations, a brief overview of advanced data structures, graph and randomized algorithms. Also covers complexity classes and approximation algorithms.

Course outcome:

The students will learn the techniques for Analysis of algorithms and advanced datastructures giving emphasis on methods useful in practice.

Text Books:

- 6. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 3rd Edition, Prentice Hall India, 1990.
- 7. S. Basse, Computer Algorithms: Introduction to Design and Analysis, Addison Wesley, 1998.

- 1. Dexter Kozen, The Design and Analysis of Algorithms, Springer, 1992.
- 2. U. Manber, Introduction to Algorithms: A creative approach, Addison W1989.
- 3. V. Aho, J. E. Hopcraft, J. D. Ullman, The design and Analysis of Computer Algorithms, Addison Wesley, 1974.

COURSE CODE:	COURSE TITLE:	CRE	DITS		
04 CS 6213	3-0-	-0:3			
	MODULES				
	MODULE: 1 – Analysis: RAM model – Notations, Recurrence analysis - Master's theorem and its proof				
	nortized analysis - Advanced Data Structures: B-Trees, Fibonacci Heaps, Disjoint Sets, Union by Rank and Path	5	15		
	INTERNAL TEST 1 (MODULE 1 & 2)				
	aph Algorithms and complexity: Matroid Theory - All- hs - Maximum Flow and Bipartite Matching.	5	15		
	domized Algorithms : Finger Printing - Pattern Matching , Algebraic Methods - Probabilistic Primality Testing, De-	4	15		
INTERNAL TEST 2 (MODULE 3 & 4)					
	plexity classes - NP-Hard and NP-complete Problems - P completeness reductions. Approximation algorithms	10	20		
	nomial Time and Fully Polynomial time Approximation listic Complexity Classes, Probabilistic Proof Theory and	10	20		
	END SEMESTER EXAM				

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 6215	VIRTUALIZED SYSTEMS	3-0-0: 3	2015

Pre-requisites: Nil

Course Objectives:

• The course introduces the concepts and principles of virtualization, the mechanisms and techniques of building virtualized systems, as well as the various virtualization-enabled computing paradigms.

Syllabus

Introduces the concepts of Virtualization and its history, general structures and architectures. The syllabus also covers virtualization in memory management, OS level and I/O level. Concepts of Virtual networking, virtual storage and virtual computing is also covered.

Course outcome:

The student will be able to do Virtualized computing and networking.

Text Books:

8. Virtual Machines: Versatile Platforms for Systems and Processes (1st Ed): Jim Smith, Ravi Nair; Morgan Kaufmann (2005).

References:

4. Applied Virtualization Technology - Usage models for IT professionals and Software Developers (1st Ed): Sean Campbell Intel Press (2006).

COURSE CODE:	COURSE TITLE:	CRE	DITS
04 CS 6215	Virtualized Systems	3-0-	0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
	Overview: Why server virtualization History and re- neral structures. Architectures comparison. Commercial re, Xen.	8	15
handling -Hypervi	ual machines: CPU virtualization -Privileged instructions sor -Paravirtualization. d virtualization. Booting up. Time keeping. CPU nercial examples.	5	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
reclamation –ball	1emory management in virtualization: partitioning – ooning. Memory sharing tion –VMWare –Red Hat Enterprise Virtualization.	5	15
MODULE: 4 - I/O - -virtual I/O server	virtualization: Virtualizing I/O devices -monolithic model	4	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
	/irtual networking –tunneling –overlay networks. nples. Virtual storage: Granularity -file system level –	10	20
computing, elasti	ualized computing: Virtual machine based distributed c cloud computing, clustering, cold and hot migration. ples - Challenges and future trends.	10	20
	END SEMESTER EXAM		

	·		
COURSE CODE	COURSE NAME	L-T-P-C	YEAR
04 GN 6001	RESEARCH METHODOLOGY	0-2-0:2	2015

Course Objectives:

To enable the students:

- To get introduced to research philosophy and processes in general.
- To formulate the research problem and prepare research plan
- To apply various numerical /quantitative techniques for data analysis
- To communicate the research findings effectively

Syllabus

Introduction to the Concepts of Research Methodology, Research Proposals, Research Design, Data Collection and Analysis, Quantitative Techniques and Mathematical Modeling, Report Writing.

Course Outcome:

Students who successfully complete this course would learn the fundamental concepts of Research Methodology, apply the basic aspects of the Research methodology to formulate a research problem and its plan. They would also be able to deploy numerical/quantitative techniques for data analysis. They would be equipped with good technical writing and presentation skills.

Text Books:

- 1. Research Methodology: Methods and Techniques', by Dr. C. R. Kothari, New Age International Publisher, 2004
- 2. Research Methodology: A Step by Step Guide for Beginners' by Ranjit Kumar, SAGE Publications Ltd; Third Edition

- 1. Research Methodology: An Introduction for Science & Engineering Students', by Stuart Melville and Wayne Goddard, Juta and Company Ltd, 2004
- 2. Research Methodology: An Introduction' by Wayne Goddard and Stuart Melville, Juta and Company Ltd, 2004
- 3. Research Methodology, G.C. Ramamurthy, Dream Tech Press, New Delhi
- 4. Management Research Methodology' by K. N. Krishnaswamy et al, Pearson Education

COURSE CODE:	COURSE TITLE	CRED	ITS	
04 GN 6001	04 GN 6001 RESEARCH METHODOLOGY			
	MODULES	Contact Hours		
MODULE : 1				
Objectives of Resea Descriptive vs. A	earch Methodology: Concepts of Research, Meaning and 2 arch, Research Process, Types of Research, Type of research: analytical, Applied vs. Fundamental, Quantitative vs. anceptual vs. Empirical	5		
Techniques involve	Research, Research Problem, Selection of a problem, d in definition of a problem, Research Proposals – Types, pects, IPR issues like patenting, copyrights.	4		
	INTERNAL TEST 1 (MODULE 1 & 2)			
Survey and Review Design Process, Sar Data Collection – co	Meaning, Need and Types of research design, Literature v, Identifying gap areas from literature review, Research npling fundamentals, Measurement and scaling techniques, oncept, types and methods, Design of Experiments.	5		
analysis, Data An	iques: Probability distributions, Fundamentals of Statistical alysis with Statistical Packages, Multivariate methods, ation and regression - Fundamentals of time series analysis is.	5		
	INTERNAL TEST 2 (MODULE 3 & 4)	<u> </u>		
papers, Methods	inciples of Thesis Writing, Guidelines for writing reports & of giving references and appendices, Reproduction of Plagiarism, Citation and acknowledgement.	5		
MODULE: 6 Documentation and	l presentation tools – LaTeX, Office with basic presentations	4		

²² Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 CS 6202	ADVANCED DATA MINING	4-0-0:4	2015

Concepts of Data mining

Course Objectives:

- Introduce the fundamental concepts of data and data analysis.
- Case based study of specific data mining tasks like Clustering, Classification, regression, Pattern Discovery and Retrieval by Content.
- Introduce algorithms for temporal data mining and spatial data mining.

Syllabus

Fundamentals of data mining, Data Mining Functionalities, Data Mining Task Primitives.Classification and prediction :Decision tree induction-bayesian classification-rule-based classification- neural networks-support vector machines. Cluster Analysis:portioning methodshierarchical methods- density based methods-grid based-model based-constraint based-clustering high dimensional data-outlier analysis. Mining Streams, Time Series and Sequence Data: Mining Data Streams, Mining Time-Series Data. Mining Object, Spatial, Multimedia, Text and Web Data: Multidimensional Analysis and Descriptive Mining of Complex Data Objects, Spatial Data Mining.

Course Outcome:

The student will demonstrate the ability to understand the basic concepts of data mining

Text Books:

1. Data mining concepts and techniques- Jiawei Han & Micheline Kamber , Elsevier (2008)

- 1. Data mining methods and Techniques: A B M Showkat Ali, Saleh A Wasimi, Cengage Learning (2004)
- 2. Introduction to Data mining with case studies: G.K Gupta PHI (2008).
- 3. Temporal Data mining Theophano Mitsa, CRC Press (2010)
- Introduction to Data Mining Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Pearson education., 1/E (2005)

COURSE NO:	COURSE TITLE:	CRE	DITS
04 CS 6202	ADVANCED DATA MINING	4-0-0:4	
	MODULES	Contact hours	Sem. Exam Marks;%
MODULE : 1		10	15
Task Primitives Cleaning, Da	of data mining, Data Mining Functionalities, Data Mining 5, Data Preprocessing: Need for Preprocessing the Data, Data ta Integration and Transformation, Data Reduction, and Concept Hierarchy Generation. Mining Frequent		
MODULE : 2		10	15
Frequent Item Rules. Class	and Correlations: Basic Concepts, Efficient and Scalable aset Mining Methods, Mining various kinds of Association ification and prediction:Decision tree induction-bayesian ule-based classification- neural networks-support vector		
	FIRST INTERNAL TEST		
MODULE : 3		8	15
ensemble met hierarchical m	genetic algorithms- prediction-accuracy and error measures- hods- model selection. Cluster Analysis: portioning methods- nethods- density based methods-grid based-model based- ed-clustering high dimensional data-outlier analysis		
MODULE : 4		8	15
Mining Time-	ns, Time Series and Sequence Data: Mining Data Streams, Series Data. Mining Sequence Patterns in Transactional ning Sequence Patterns in Biological Data		
	SECOND INTERNAL TEST		
MODULE : 5		10	20
	, Spatial, Multimedia, Text and Web Data: Multidimensional Descriptive Mining of Complex Data Objects, Spatial Data		

24 Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

		•
MODULE : 6	10	20
Multimedia Data Mining, Description-based retrieval systemsContent- based retrieval systems, Visual datamining, Text Mining, Mining the World Wide Web		
END SEMESTER EXAM		

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 CS 6204	NATURAL LANGUAGE PROCESSING	3-0-0:3	2015

Course Objectives:

- To familiarize the fundamentals of speech and written language processing
- To study the applications of these techniques in real world problems like spell-checking, Parts-of Speech Tagging, Corpus development, Wordnet, speech recognition, pronunciation modelling, dialogue agents, document retrieval etc
- To gather information about widely used language processing resources.

Syllabus

Introduction to Natural Language Understanding: Linguistic Background-Applications An Outline of English Syntax-Grammars and Parsing-Features and Augmented Grammars.Grammars for Natural Language: Toward Efficient Parsing, Ambiguity Resolution: Statistical Methods - Basic Probability Theory. POS tagging – Probabilistic CFG's. Knowledge Representation and Reasoning-Local Discourse Context and Reference-Using World Knowledge - Discourse Structure-Defining a Conversational Agent.

Course Outcome:

The student will demonstrate the ability to understand the basic concepts of natural language processing

Text Books:

- 1. Allen, James. Natural Language Understanding. The Benjamin/Cummings Publishing Company, Inc., Redwood City, CA. 1995.
- 2. Christopher Manning and Hinrich Schütze. 1999. Foundations of Statistical Natural Language Processing. The MIT Press.

References:

- 1. Bates, M. (1995). Models of Natural language understanding. Proceedings of the National Academy of Sciences of the United States of America, Vol. 92, No. 22 (Oct. 24, 1995)
- 2. Speech and Language Processing (2nd Ed): Daniel Jurafsky and James Martin, PH (2008)
- 3. Bird, S., Klein, E., Loper, E. (2004). Natural Language Processing with Python. Sebastopol, CA: O'Reilly Media.
- 4. Dan Jurafsky and James Martin. 2000. Speech and LanguageProcessing. Prentice Hall.

26 Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

04 CS 6204 NATURAL LANGUAGE PROCESSING 3-0-0:3 MODULES Contact hours Sem. Exam Marks;% MODULE : 1 7 15 Introduction to Natural Language Understanding: Linguistic Background- Applications An Outline of English Syntax-Grammars and Parsing-Features and Augmented Grammars. 7 15 MODULE : 2 7 15 Grammars for Natural Language: Toward Efficient Parsing, Ambiguity Resolution: Statistical Methods- Basic Probability Theory 7 15 MODULE : 3 FIRST INTERNAL TEST 8 15 POS tagging – Rule based POS tagging , Stochastic HMM POS tagging , Transformation based tagging, Probabilistic CFG's 6 15 MODULE : 4 6 15 5 Semantics and Logical Form: Linking Syntax and Semantics-Ambiguity Resolution 6 20 Strategies for Semantic Interpretation-Scoping and the Interpretation of Noun Phrases 8 20	COURSE NO:	COURSE TITLE:	CRE	DITS
HoursExam Marks;%MODULE : 1715Introduction to Natural Language Understanding: Linguistic Background- Applications An Outline of English Syntax-Grammars and Parsing-Features and Augmented Grammars.715MODULE : 2715Grammars for Natural Language: Toward Efficient Parsing, Ambiguity Resolution: Statistical Methods- Basic Probability Theory715MODULE : 3815POS tagging – Rule based POS tagging , Stochastic HMM POS tagging , Transformation based tagging, Probabilistic CFG's615MODULE : 4615Semantics and Logical Form: Linking Syntax and Semantics-Ambiguity Resolution620Strategies for Semantic Interpretation-Scoping and the Interpretation of Noun Phrases620	04 CS 6204	NATURAL LANGUAGE PROCESSING	3-0-0:3	
Introduction to Natural Language Understanding: Linguistic Background-Applications An Outline of English Syntax-Grammars and Parsing-Features and Augmented Grammars. 7 15 MODULE : 2 7 15 Grammars for Natural Language: Toward Efficient Parsing, Ambiguity Resolution: Statistical Methods- Basic Probability Theory 7 15 MODULE : 3 8 15 POS tagging – Rule based POS tagging , Stochastic HIMM POS tagging , Transformation based tagging, Probabilistic CFG's 6 15 MODULE : 4 6 15 Semantics and Logical Form: Linking Syntax and Semantics-Ambiguity Resolution 6 20 Strategies for Semantic Interpretation-Scoping and the Interpretation of Noun Phrases 6 20		MODULES		
Applications An Outline of English Syntax-Grammars and Parsing-Features and Augmented Grammars. 7 15 MODULE : 2 7 15 Grammars for Natural Language: Toward Efficient Parsing, Ambiguity Resolution: Statistical Methods- Basic Probability Theory 7 15 MODULE : 2 7 15 MODULE : 3 8 15 POS tagging - Rule based POS tagging , Stochastic HMM POS tagging , Transformation based tagging, Probabilistic CFG's 8 15 MODULE : 4 6 15 Semantics and Logical Form: Linking Syntax and Semantics-Ambiguity Resolution 6 20 Strategies for Semantic Interpretation-Scoping and the Interpretation of Noun Phrases 6 20	MODULE : 1		7	15
Grammars for Natural Language: Toward Efficient Parsing, Ambiguity Resolution: Statistical Methods- Basic Probability TheoryAmbiguity Resolution: Statistical Methods- Basic Probability TheoryFIRST INTERNAL TESTMODULE : 38POS tagging – Rule based POS tagging , Stochastic HMM POS tagging , Transformation based tagging, Probabilistic CFG's6MODULE : 46Semantics and Logical Form: Linking Syntax and Semantics-Ambiguity Resolution6SECOND INTERNAL TEST6MODULE : 56Strategies for Semantic Interpretation-Scoping and the Interpretation of Noun Phrases6	Applications A	n Outline of English Syntax-Grammars and Parsing-Features		
Resolution: Statistical Methods- Basic Probability Theory Image: Constraint of the system of the	MODULE : 2		7	15
MODULE : 3 8 15 POS tagging – Rule based POS tagging , Stochastic HMM POS tagging , Transformation based tagging, Probabilistic CFG's 6 15 MODULE : 4 6 15 Semantics and Logical Form: Linking Syntax and Semantics-Ambiguity Resolution 6 15 SECOND INTERNAL TEST MODULE : 5 6 20 Strategies for Semantic Interpretation-Scoping and the Interpretation of Noun Phrases 6 20				
POS tagging – Rule based POS tagging , Stochastic HMM POS tagging , Transformation based tagging, Probabilistic CFG's 6 15 MODULE : 4 6 15 Semantics and Logical Form: Linking Syntax and Semantics-Ambiguity Resolution 6 15 SECOND INTERNAL TEST MODULE : 5 6 20 Strategies for Semantic Interpretation-Scoping and the Interpretation of Noun Phrases 6 20		FIRST INTERNAL TEST		
Transformation based tagging, Probabilistic CFG's 6 MODULE : 4 6 Semantics and Logical Form: Linking Syntax and Semantics-Ambiguity Resolution 6 SECOND INTERNAL TEST MODULE : 5 6 20 Strategies for Semantic Interpretation-Scoping and the Interpretation of Noun Phrases 6 20	MODULE : 3		8	15
Semantics and Logical Form: Linking Syntax and Semantics-Ambiguity Image: Comparison of the second semantic se				
Resolution SECOND INTERNAL TEST MODULE : 5 6 20 Strategies for Semantic Interpretation-Scoping and the Interpretation of Noun Phrases 6 20	MODULE : 4		6	15
MODULE : 5 6 20 Strategies for Semantic Interpretation-Scoping and the Interpretation of Noun Phrases 6 20		d Logical Form: Linking Syntax and Semantics-Ambiguity		
Strategies for Semantic Interpretation-Scoping and the Interpretation of Noun Phrases		SECOND INTERNAL TEST	1	
Noun Phrases	MODULE : 5		6	20
MODULE : 6 8 20	U U	Semantic Interpretation-Scoping and the Interpretation of		
	MODULE : 6		8	20
Knowledge Representation and Reasoning-Local Discourse Context and Reference-Using World Knowledge - Discourse Structure-Defining a Conversational Agent	Reference-Usi	ng World Knowledge - Discourse Structure-Defining a		
END SEMESTER EXAM		END SEMESTER EXAM		<u> </u>

27 Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 CS 6206	MATHEMATICS OF CRYPTOGRAPHY	3-0-0:3	2015

Basic concepts of Cryptography

Course Objectives:

- To understand the number theoretic foundations of modern cryptography
- To implement and analyze cryptographic and number theoretic algorithms
- To understand public key cryptosystems
- To understand modern cryptographic techniques

Syllabus

Divisibility, Division Algorithm, Euclidean Algorithm, Congruence, Complete Residue systems, Reduced Residue systems. Fermat's little theorem, Euler's Generalization, Wilson's Theorem, Euler Phifunction, multiplicative property. Discrete Logarithm problem, Introduction to Modern symmetric key ciphers- MODERN BLOCK CIPHERS-Substitution - transposition, Block ciphers as Permutation groups-Components of a Modern block cipher. Asymmetric Key Encipherment : Mathematics of Cryptography: Primes-Definition- Cardinality of primes -checking for primeness ,Generating primes, PRIMALITY TESTING-Deterministic algorithms, Probabilistic algorithms ,FACTORIZATION, Fundamental Theorem of Arithmetic.

Course Outcome:

The student will demonstrate the ability to understand the basic concepts of modern cryptography

Text Books:

- Cryptography and Network security", Beharoz a Forouzan, Tata McGraw Hill, Special Indian Edition, 2007
 - 28 Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

- 1. Introduction to Cryptography with coding theory", Wade Trappe, Lawrence C. Washington ,pearson ,2nd edition
- 2. A Course in Number Theory and Cryptography, Â Neal Koblitz, (Springer 2006).
- 3. An Introduction to Mathematical Cryptography, Jill Pipher, Jeffrey Hoffstein, Joseph H. Silverman (Springer, 2008)
- 4. William Stallings, "Cryptography and network security- principles and practice", Pearson Prentice Hall, 3rd Edition.
- 5. An Introduction to theory of numbers, Niven, Zuckerman and Montgomery, (Wiley 2006)
- 6. Charlie Kaufman, Radia Perl man, Mike Speciner, "Network Security private communication in a practice", Pearson Prentice Hall, 2nd Edition.
- 7. Atul Kahate , "Cryptography and network security", TMGH.

COURSE NO:	CREDITS				
04 CS 6206	04 CS 6206 MATHEMATICS OF CRYPTOGRAPHY				
	MODULES				
Residue system	ision Algorithm, Euclidean Algorithm, Congruence, Complete ns, Reduced Residue systems. Fermat's little theorem, lization, Wilson's Theorem, Euler Phi-function, property.	7	15		
MODULE : 2 Finite Fields, DLP-Primitive Roots, Quadratic Residues, Legendre Symbol, Jacobi Symbol, Quadratic Reciprocity Law. Symmetric Key Encipherment Mathematics of Cryptography- Algebraic structures Group-Ring-Field, GF(2^n)Fields-Polynomials-Using a Generator.			15		
	FIRST INTERNAL TEST				
ciphers- MOD ciphers as Per Boxes, Attacks	rithm problem, Introduction to Modern symmetric key ERN BLOCK CIPHERS-Substitution - transposition , Block mutation groups-Components of a Modern block cipher- S- on Block ciphers. MODERN STREAM CIPHERS- Synchronous and Asynchronous Stream ciphers	6	15		
MODULE : 4 Asymmetric Key Encipherment : Mathematics of Cryptography: Primes- Definition- Cardinality of primes -checking for primeness ,Generating primes, PRIMALITY TESTING-Deterministic algorithms , Probabilistic algorithms ,FACTORIZATION, Fundamental Theorem of Arithmetic- Factorization methods-Fermat method ,Pollard p-1 method , Pollard rho method- CHINEESE REMAINDER THEORM, Quadratic congruence,		8	15		
Exponentiation	NEESE REMAINDER THEORM, Quadratic congruence, a and Logarithm. Asymmetric key cryptography-RSA RABIN cryptosystem SECOND INTERNAL TEST				

³⁰ Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

UNIVE	SITY
K	Π.
N.	5

MODULE : 5	8	20
ELGAMAL cryptosystem, ELLIPTIC CURVE cryptosystem-Elliptic Curves over reals, -Elliptic Curves over finite field, Discrete Log problem for Elliptic curves. Message Integrity and Message Authentication: Message integrity- Document and fingerprint-message and message digest, checking integrity, cryptographic hash function criteria.		
MODULE : 6	6	20
RANDOM ORACLE MODEL-Pigeon hole principle Attacks on Random Oracle model. MESSAGE AUTHENTICATION-Modification detection code, Message authentication code.		
END SEMESTER EXAM		

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 CS 6208	IMAGE ANALYSIS AND RECOGNITION	3-0-0:3	2015

Concepts of Digital Image Processing

Course Objectives:

- To understand processing of digital images
- To familiarize different mathematical structures
- To study detailed models of image formation
- To study image feature detection, matching, segmentation and recognition
- To understand classification and recognition of objects

Syllabus

Course Outcome:

The student will demonstrate the ability to understand the processing of digital images

Text Books:

- 1. Computer vision: Algorithms and Applications (1st Ed): Richard Szeliski , Springer (2010)
- 2. Algorithms for Image Processing and Computer Vision (2nd Ed): J. R. Parker, Wiley (2010)

- 1. Learning OpenCV: Computer Vision with the OpenCV Library (1st Ed): Gary Bradski, O'Reilly (2008)
- 2. Digital Image Processing, Rafael C., Gonzalez & Woods R.E. Addison Wesley, 1999.
- 3. Digital Image Processing , 1st Edition, T Veerakumar , S Jayaraman , S Esakkirajan.
- 4. Computer Vision, L. Shapiro, G. Stockman

COURSE NO:	COURSE TITLE:	CRE	DITS	
04 CS 6208	IMAGE ANALYSIS AND RECOGNITION	3-0-0:3		
	MODULES	Contact hours	Sem. Exam Marks; %	
MODULE : 1		8	15	
Introduction - o sampling and c	digital image representation - a simple image model - quantization.			
MODULE : 2		6	15	
Discrete Fourie	er Transform -Harr, Walsh and Hadamard transforms.			
	FIRST INTERNAL TEST	I		
MODULE : 3		6	15	
	olor-Texture and segmentation, Grey-Level Co-occurrence, ture, Energy and Texture.			
MODULE : 4		6	15	
Color segment Pedestrian det	ation, Color textures. Object detection-face detection- ection			
SECOND INTERNAL TEST				
MODULE : 5		8	20	
-	nition-context and scene understanding . Classification – ns and Statistics, Minimum distance classifiers – Cross			
MODULE : 6		8	20	
	les – Bagging and boosting, Content-based image retrieval, uery by example			
	END SEMESTER EXAM	<u> </u>	<u> </u>	

33 Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 CS 6212	ADHOC NETWORKS	3-0-0:3	2015

Concepts of Networking

Course Objectives:

- To know the constraints of the wireless physical layer that affect the design and performance of ad hoc and sensor network, protocols, and applications;
- To understand MAC, Routing protocols that have been proposed for ad hoc and sensor network
- To understand the energy issues in sensor network and how they can be addressed using scheduling, media access control, and special hardware;
- To explain various security threats to ad hoc networks and describe protocol solutions

Syllabus

Overview of Wireless LAN, PAN - IEEE 802.11- Bluetooth - Wireless WANs and MANS.AD HOC Wireless Networks - Cellular and Ad hoc networks - Applications of Ad hoc networks . Issues in Ad hoc networks - MAC protocols for Ad hoc networks. Routing Protocols for Ad hoc Networks - Classification - Table driven, On demand, Hierarchical Routing Protocols . Energy Management in Ad hoc Networks. Wireless Sensor Networks - Architecture - Data Dissemination and Gathering - Location Discovery.

Course Outcome:

The student will get an understanding of wireless cellular, ad hoc and sensor networks

Text Books:

1. Ad Hoc Wireless Networks: Architectures and Protocols, C. Siva Ram Murthy and B. S. Manoj, (2nd Ed.), Pearson Education (2005)

- 1. Wireless Networks: Anurag Kumar, D. Manjunath, Joy Kuri, Morgan Kaufman (1st Ed.), (2008)
- 2. Ad Hoc & Sensor Networks: Theory and Applications, Carlos de Morais Cordeiro and Dharma Prakash Agrawal, (1st Ed.), World Scientific (2007)

³⁴ *Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science*

COURSE NO:	COURSE TITLE:	CREDITS			
04 CS 6212	ADHOC NETWORKS	3-0-0:3			
	MODULES	Contact hours	Sem. Exam Marks; %		
MODULE : 1		6	15		
Overview of W and MANs	/ireless LAN, PAN - IEEE 802.11- Bluetooth - Wireless WANs				
MODULE : 2		6	15		
Cellular Archite Wireless doma	ecture- WLL - IEEE 802.16 - Wireless Internet - IP and TCP in in.				
	FIRST INTERNAL TEST				
MODULE : 3		8	15		
	ess Networks - Cellular and Ad hoc networks - Applications of ks . Issues in Ad hoc networks - MAC protocols for Ad hoc				
MODULE : 4		8	15		
-	cols for Ad hoc Networks - Classification - Table driven, On archical Routing Protocols . Energy Management in Ad hoc				
	SECOND INTERNAL TEST				
MODULE : 5		8	20		
	or Networks - Architecture - Data Dissemination and cation Discovery.				
MODULE : 6		6	20		
,Seismic Detec	^F WSNs Environmental monitoring , Acoustic detection tion ,Military surveillance ,Inventory tracking ,Medical nart spaces Process Monitoring. Hybrid Wireless Networks- d Systems				

35 Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

END SEMESTER EXAM			
COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 CS 6214	CLOUD COMPUTING	3-0-0:3	2015

Course Objectives:

- To know the Distributed Computing
- To understand Cloud Computing, Characteristics and Virtualization concepts
- To understand the Service models
- To explain various Parallel and Distributed Programming paradigms

Syllabus

Introduction to Cloud Computing- Cloud issues and challenges - Properties - Characteristics -Service models, Deployment models. Cloud resources: Network and API - Virtual and Physical computational resources - Data-storage. Virtualization concepts - Types of Virtualization- Introduction to Various Hypervisors - High Availability (HA)/Disaster Recovery (DR) using Virtualization, Moving VMs . Cloud Programming and Software Environments – Parallel and Distributed Programming paradigms . Programming on Amazon AWS and Microsoft Azure – Programming support of Google App Engine – Emerging Cloud software Environment

Course Outcome:

The student will get an understanding of cloud computing and virtualization concepts.

Text Books:

- 1. Kai Hwang, Geoffrey C. Fox and Jack J. Dongarra, "Distributed and cloud computing from Parallel Processing to the Internet of Things", Morgan Kaufmann, Elsevier 2012
- 2. Barrie Sosinsky, " Cloud Computing Bible" John Wiley & Sons, 2010

- 1. Tim Mather, Subra Kumaraswamy, and Shahed Latif, Cloud Security and Privacy An Enterprise Perspective on Risks and Compliance, O'Reilly 2004
- 2. Cloud Computing: Principles and Paradigms, Editors: Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Wile, 2011
- 3. Cloud Computing: Principles, Systems and Applications, Editors: Nikos Antonopoulos, Lee Gillam, Springer, 2012
- 4. Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Ronald L. Krutz, Russell Dean Vines, Wiley-India, 2010

³⁶ Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

COURSE NO:	COURSE NO: COURSE TITLE: CREDITS		
04 CS 6214	CLOUD COMPUTING	3-0)-0:3
	MODULES	Contact hours	Sem. Exam Marks; %
MODULE : 1		7	15
History of Centralized and Distributed Computing - Overview of Distributed Computing, Cluster computing, Grid computing. Technologies for Network based systems- System models for Distributed and cloud computing- Software environments for distributed systems and clouds.			
MODULE : 2		7	15
Introduction to Cloud Computing- Cloud issues and challenges - Properties - Characteristics - Service models, Deployment models. Cloud resources: Network and API - Virtual and Physical computational resources - Data- storage.			
	FIRST INTERNAL TEST		
MODULE : 3		7	15
Virtualization concepts - Types of Virtualization- Introduction to Various Hypervisors - High Availability (HA)/Disaster Recovery (DR) using Virtualization, Moving VMs.			
MODULE : 4		7	15
Service models - Infrastructure as a Service (IaaS) - Resource Virtualization: Server, Storage, Network - Case studies. Platform as a Service (PaaS) - Cloud platform & Management: Computation, Storage.			
	SECOND INTERNAL TEST		
MODULE : 5		7	20
	oftware as a Service (SaaS) - Web services - Web 2.0 - Web ies – Anything as a service (XaaS).		
MODULE : 6		7	20
Programming	nming and Software Environments – Parallel and Distributed paradigms . Programming on Amazon AWS and Microsoft Imming support of Google App Engine – Emerging Cloud onment.		

COURSE NO.	COURSE TITLE	CREDITS	YEAR
COURSE NO.		CREDITS	TCAR
04 CS 6216	PARALLEL COMPUTER ARCHITECTURE	3-0-0:3	2015

Course Objectives:

- Get a broad understanding of parallel computer architecture and different models for parallel computing
- To understand concepts related to memory consistency models, cache coherence, interconnection networks, and latency tolerating techniques.
- To learn about strategies for how algorithms that were originally developed for single-processor systems can be converted to run efficiently on parallel computers
- To know about current practical implementations of parallel architectures.

Syllabus

Introduction to parallel processing - Overview of pipelining – pipelined data paths and control – Data hazards – Control hazards. Instruction level parallelism – Instruction level parallelism (ILP)– Reducing branch costs – exploiting ILP using static and dynamic scheduling – Data level parallelism. Shared memory Multiprocessors – Clusters and message passing processors . Hardware multithreading – SISD, MIMD, SIMD, SPMD and Vector – Computing GPUs. Thread level parallelism – Centralised shared memory architectures – Distributed shared memory and directory based coherence

Course Outcome:

The student will get an understanding of parallel computer architecture and different models for parallel computing

Text Books:

- 1. Computer Organization and Design (4th Ed): David A Patterson and John L. Hennessy, Morgan Kaufmann (2011)
- 2. Computer Architecture-A Quantitative Approach (5th Ed): John L. Hennessy and David A Patterson, Morgan Kaufmann (2011)

- 1. Programming massively parallel processors: A hands-on approach (1st Ed): David B. Kirk and Wen-mei W. Hwu, Morgan Kaufmann (2010)
- 2. David E. Culler and Jaswinder Pal Singh, with Anoop Gupta. Parallel Computer Architecture: A Hardware/Software Approach. Morgan Kaufmann, 1998. ISBN: 1558603433.
- 3. Michael J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw Hill, 2003. ISBN: 0072822562.

³⁸ *Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science*

paths and control – MODULE : 2 Instruction level par	PARALLEL COMPUTER ARCHITECTURE MODULES allel processing - Overview of pipelining – pipelined data Data hazards – Control hazards rallelism – Instruction level parallelism (ILP)– Reducing loiting ILP using static and dynamic scheduling – Data	3-C Contact hours 7 7	0-0:3 Sem. Exam Marks; % 15 15
Introduction to para paths and control – MODULE : 2 Instruction level par branch costs – expl	allel processing - Overview of pipelining – pipelined data Data hazards – Control hazards rallelism – Instruction level parallelism (ILP)– Reducing	hours 7	Exam Marks; %
Introduction to para paths and control – MODULE : 2 Instruction level par branch costs – expl	Data hazards – Control hazards rallelism – Instruction level parallelism (ILP)– Reducing		
paths and control – MODULE : 2 Instruction level par branch costs – expl	Data hazards – Control hazards rallelism – Instruction level parallelism (ILP)– Reducing	7	15
Instruction level par branch costs – expl		7	15
branch costs – expl			
	FIRST INTERNAL TEST		
MODULE : 3		7	15
Exploiting memory h Cache controllers . P	hierarchy – virtual machines – Cache coherence – Parallelism and I/O		
MODULE : 4		7	15
Shared memory Multiprocessors – Clusters and message passing processors . Hardware multithreading – SISD, MIMD, SIMD, SPMD and Vector – Computing GPUs.			
	SECOND INTERNAL TEST	<u> </u>	
MODULE : 5		7	20
Thread level parallelism – Centralised shared memory architectures – Distributed shared memory and directory based coherence			
MODULE : 6		7	20
Synchronisation – N and their performan	Models of memory Consistency – multicore processors nce.		
	END SEMESTER EXAM	I	

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 6218	BIO INFORMATICS	3-0-0: 3	2015

Course Objectives:

- To familiarize computational problems in biology
- To understand models of DNA and DNA mapping
- To study structure prediction

Syllabus

Basic concepts of molecular Biology-Proteins-Nucleic acids– genes and genetic synthesis –translationtranscription protein Synthesis- Chromosomes- Maps and sequences- human genome projectsequence data bases . Strings-Graphs-Algorithms- Comparing 2 sequences- Global & Local comparison-General Gap Penalty Function-Affix gap penalty function. Fragment Assembly of DNA-Biological Background –Models-Algorithms-Heuristics-Physical Mapping of DNA Restriction site Mapping-site models-Internal Graph Models –Hybridization Mapping-Heuristics.

Course Outcome:

The student will demonstrate the ability to understand fundamental concepts from molecular biology,

computational problems in molecular biology and some efficient algorithms that have been proposed to

solve them.

Text Books:

1. Introduction to Computational Molecular Biology, Joao Meidanis, and Carlos Setubal , $\ \ 2007$ 1^{st} edition

References:

1. Computational Molecular Biology-An introduction (1st Ed): Peter Clote and Rolf Backofen, Wiley Series (2000)

2. An introduction to Bioinformatics Algorithms (1st Ed): Neil James and Pavel A Pevzner, MIT Press (2004)

COURSE CODE:	COURSE TITLE	CRED	ITS
04 CS 6218	BIO INFORMATICS	3-0-0	0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
synthesis –transla	molecular Biology-Proteins-Nucleic acids– genes and genetic ation-transcription protein Synthesis- Chromosomes- Maps uman genome project- sequence data bases	8	15
• •	gorithms- Comparing 2 sequences- Global & Local ral Gap Penalty Function-Affix gap penalty function	8	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
	ple sequences-Star alignments-Tree alignments-Database ices BLAST-FAST –Issues	8	15
Heuristics-Physica	bly of DNA-Biological Background –Models-Algorithms- I Mapping of DNA Restriction site Mapping-site models- odels –Hybridization Mapping-Heuristics	8	15
	INTERNAL TEST 2 (MODULE 3 & 4)	J	
	–Binary Character States-Parsimony and Compatibility in ithm for Distance Matrices-Additive Trees	8	20
MODULE 6: Genome rearrang structure prediction		8	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 6222	DISTRIBUTED OPERATING SYSTEMS	3-0-0: 3	2015

Course Objectives:

- To familiarize Distributed computing environment.
- To understand Message Passing
- To understand Design and implementation Issues of DSM
- To understand Features of global scheduling algorithm.

Syllabus

Distributed computing systems fundamentals : Introduction to Distributed computing systems, Models, Popularity. Distributed Computing system . Design issues of Distributed operating system. Distributed computing environment. RPC Model, Transparency of RPC, RPC messages, Marshaling Arguments and Results. Server Management. Distributed Shared Memory: General architecture of DSM systems. Design and implementation Issues of DSM, Granularity, Structure of Shared Memory Space. Process Management: Introduction, Process Migration, Threads. Distributed File Systems: Features of good DFS, File models, File Accessing models.

Course Outcome:

The student will demonstrate the ability to understand the basic concepts of distributed computing systems.

Text Books:

1. Pradeep Sinha K., "Distributed Operating Systems concepts and design", PHI pvt ltd

References:

1. Mukesh Singhal, Niranjan G Shivarathri, "Advanced Concepts in Operating systems", Tata Mc Graw Hill Ltd. Tata Mcgraw Hill Education Pvt. Limited, 2011

2. Coulouris.G, Dollimore J & Kindberg T, "Distributed Systems concepts and design", 4 th edition, Pearson Education.

3. Tanenbaum A S, "Modern Operating System", PHI learning private limited, 3 rd edition

COURSE CODE:	COURSE TITLE	CRED	ITS
04 CS 6222	DISTRIBUTED OPERATING SYSTEMS	3-0-	0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
computing system	uting systems fundamentals : Introduction to Distributed ms, Models, Popularity. Distributed Computing system . f Distributed operating system. Distributed computing	7	15
by Message Pass	: Features of a good Message Passing System. Issues in IPC ing Synchronization ,Buffering, Multi datagram Messages, coding Message data, Process Addressing ,Failure Handling, ation	7	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3: RPC Model ,Trans Results. Server M Communication P Security ,RPC in H	7	15	
MODULE 4: Distributed Shared Memory: General architecture of DSM systems. Design and implementation Issues of DSM, Granularity, Structure of Shared Memory Space			15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5: Consistency models, Replacement strategy, Thrashing. Synchronization: Clock Synchronization. Event Ordering, Mutual Exclusion, Deadlock, Election Algorithms. Resource Management : Features of global scheduling algorithm. Task assignment approach, Load-Balancing and Load approach			20
-			
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 6224	PATTERN RECOGNITION	3-0-0: 3	2015

Course Objectives:

- To familiarize Pattern classification
- To understand Parameter estimation and supervised learning
- To understand Discriminant analysis
- To understand unsupervised learning

Syllabus

Pattern classification: Bayesian decision theory, minimum-error-rate classification, classifiers, discriminant functions. Parameter estimation and supervised learning:- Maximum likelihood estimation, the Bayes classifier, learning the mean of a normal density, general bayesian learning. Nonparametric technique- parzen windows, k-nearest Neighbor estimation, estimation of posterior probabilities, nearest- neighbor rule, k-nearest neighbor rule. Methods for dimensionality reduction: Fisher's discriminant analysis, Principal component analysis.

Discriminant analysis: Models for decision surfaces, linear discriminant analysis-perception model, minimum mean squared error based learning, support vector machines. Pattern clustering (unsupervised learning): Criterion functions for clustering, methods for clustering- hard and soft clustering.

Course Outcome:

The student will demonstrate the ability to understand the basic concepts of pattern recognition and analysis.

Text Books:

1. Richard O. Duda, Peter E. Hart and David G. Stork, Pattern Classification, 2nd Edition, John Wiley & Sons, 2012.

2. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

References:

1. Sergios Theodoridis and Konstantinos Koutroumbas, Pattern Recognition,4th Edition, Academic Press-Elsevier, 2004 .

2. Earl Gose, Richard Johnsonbaugh, and Steve Jost; Pattern Recognition and Image Analysis, PHI Pvte. Ltd., NewDelhi-1, 1999.

3. Fu K.S., Syntactic Pattern recognition and applications, Prentice Hall, Eaglewood cliffs, N.J., 1982

4. Richard O. Duda and Hart P.E, and David G Stork, Pattern classification , 2nd Edn., John Wiley & Sons Inc., 2001.

COURSE CODE:	COURSE TITLE	CRE	DITS	
04 CS 6224	PATTERN RECOGNITION	3-0)-0:3	
	MODULES			
classification, cla normal (Gaussiar	MODULE 1: Pattern classification: Bayesian decision theory, minimum-error-rate classification, classifiers, discriminant functions, decision surfaces, normal (Gaussian) density, continuous and discrete values features Bayesian networks (graphical models)			
	tion and supervised learning:- Maximum likelihood ayes classifier, learning the mean of a normal density, earning	7	15	
	INTERNAL TEST 1 (MODULE 1 & 2)			
estimation, estima k-nearest neighbo	technique- parzen windows, k-nearest Neighbor ation of posterior probabilities, nearest- neighbor rule, or rule. Methods for dimensionality reduction: Fisher's vsis, Principal component analysis.	7	15	
MODULE 4: Discriminant anal- analysis-perceptic learning, support	7	15		
	INTERNAL TEST 2 (MODULE 3 & 4)			
Bayesian regressio	r models for regression, polynomial regression, on. Pattern clustering (unsupervised learning): s for clustering, methods for clustering- hard and soft	7	20	
MODULE 6: K-means, GMM, methods.	hierarchical clustering methods, cluster validation	7	20	
	END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 6226	AGENT BASED COMPUTING	3-0-0: 3	2015

Pre-requisites: Concepts of Artificial Intelligence

Course Objectives:

- Introduce the concepts of Artificial intelligence required by agents
- Study agent based programming languages
- Develop agent programs for various applications

Syllabus

Artificial Intelligence - intelligent agents – Environment- Structure of agents - Agent types - Problem solving agents . Uninformed Search strategies - Informed Search and Exploration - Adversarial Search. Knowledge and reasoning - Knowledge Based Agents - First order logic – Reasoning - Backward chaining – Resolution . Knowledge representation - Handling uncertain knowledge - Reasoning under uncertainty - Statistical reasoning. Learning - forms of learning - Inductive learning - Learning decision trees- Explanation based learning - Statistical learning - Instance based learning - Neural networks - Reinforcement learning

Course Outcome:

The student will demonstrate the ability to understand the basic concepts of agent based computing.

Text Books:

- 1. Artificial intelligence. A modern approach by Stuart Russell & Peter Norvig.
- 2. Software Agents: Jeffrey M.Broadshaw, AAAI Press (1997)

References:

1. Software Agents: Jeffrey M.Broadshaw, AAAI Press (1997)

2. Multi agent System A modern approach to distributed artificial intelligence: Gerhard Weiss, MIT Press (2000)

COURSE CODE:	COURSE TITLE	CRED	ITS		
04 CS 6226	AGENT BASED COMPUTING	3-0-0	0:3		
	MODULES				
- Agent types - P	nce - intelligent agents – Environment- Structure of agents roblem solving agents . Uninformed Search strategies - and Exploration - Adversarial Search	7	15		
MODULE 2: Knowledge and re Reasoning - Backy Handling uncertai reasoning.	7	15			
	INTERNAL TEST 1 (MODULE 1 & 2)				
•	onents of planning systems - Planning with state space rder planning - Planning Graphs - Hierarchical planning - ing	7	15		
MODULE 4: Learning - forms of learning - Inductive learning - Learning decision trees- Explanation based learning - Statistical learning - Instance based learning - Neural networks - Reinforcement learning		7	15		
	INTERNAL TEST 2 (MODULE 3 & 4)				
MODULE 5: Agent oriented programming language - KQML as an agent communication language		7	20		
MODULE 6: Java implementat Telescript.	ion of intelligent agents - Languages supporting mobility -	7	20		
	END SEMESTER EXAM				

⁴⁷ Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 6294	NETWORK SIMULATION LAB	0-0-2: 2	2015

Syllabus

1. A thorough study of packet capturing tool called WireShark.

2. Familiarizing Network Simulator – 3 (NS3) with suitable examples

3. Simulate a wired network consisting of TCP and UDP Traffic using NS3 and then calculate their respective throughput.

4. Performance evaluation of different routing protocols in wired network environment using NS3

5. Performance evaluation of different queues and effect of queues and buffers in wired network environment using NS3

6. Compare the behavior of different variants of TCP (Tahoe, Reno, Vegas....) in wired network using NS3. Comparison can be done on the congestion window behavior by plotting graph.

7. Simulation of wireless Ad hoc networks using NS3

8. Simulate a wireless network consisting of TCP and UDP

9. Performance evaluation of different ad-hoc wireless routing protocols using NS3

10. Create different Wired-cum-Wireless networks and MobileIP Simulations using NS3.

References:

1. An introduction to network simulator 3 Jack L. Burbank

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 CS 7201	COMPUTATIONAL LINGUISTICS	3-0-0: 3	2015

Concepts of Natural Language Processing

Course Objectives:

To understand statistical and rule based modelling of natural languages from a computational point of view.

- To give a comprehensive coverage of language processing fundamentals like morphology, Syntax, Semantics and pragmatics.
- To study the applications of these techniques in real world problems like spell-checking, Parts-of Speech Tagging, Corpus development, Wordnet, speech recognition, pronunciation modelling, dialogue agents, document retrieval etc

Syllabus

Introduction – Words - Regular Expressions and Finite Automata – Regular Expressions. Finite state Automata. Morphology. Word Classes and Part-of-Speech Tagging- Rule-based POS tagging - HMM Taggers – Transformation Based Tagging. A Basic Top-down Parser - The Earley Algorithm - Features and Unification – Feature structures – Unification of Feature Structures.

Semantics - Representing Meaning - FOPC – Semantic Analysis. Relations Among Lexemes and Their Senses - WORDNET: A database of lexical relations Discourse – Reference Resolution -Text Coherence Discourse Structures - Dialog and Conversational Agents.

Course Outcome:

Students who successfully complete this course will have demonstrated an ability to Apply various computational models in application domains like Machine translation, information retrieval etc.

Text Books:

1. Speech and Language Processing (2nd Ed): Daniel Jurafsky and James Martin, PHI (2008)

- 1. Foundations of statistical natural language processing (1st Ed): Christopher D. Manning and Hin Rich Schutze, MIT press (1999)
- 2. Natural Language Understanding (2nd Ed): James Allen, The Benajmins/Cummings Publishing Company Inc(1994)

COURSE NO:	COURSE TITLE:	CREDITS	
04 CS 7201	COMPUTATIONAL LINGUISTICS	3-0	-0: 3
	MODULES	Contact hours	Sem. Exam Marks;%
MODULE : 1		7	15
Expressions.	Words - Regular Expressions and Finite Automata – Regular Finite state Automata. Morphology and Finite State Probabilistic Models of Pronunciation and Spelling – nodels		
MODULE : 2		7	15
Part-of-Speech	distance – weighted automata - N grams. Word Classes and n Tagging- Rule-based POS tagging - HMM Taggers – n Based Tagging		
	FIRST INTERNAL TEST		
MODULE : 3		7	15
	Grammars for English - Parsing with Context Free Grammars. wwn Parser - The Earley Algorithm .		
MODULE : 4		7	15
	Unification – Feature structures – Unification of Feature mantics - Representing Meaning - FOPC – Semantic Analysis		
	SECOND INTERNAL TEST		
MODULE : 5		7	20
Syntax driven	semantic analysis - Lexical Semantics.		
Relations Amo lexical relation	ng Lexemes and Their Senses - WORDNET: A database of s.		

		•
MODULE : 6	7	20
Discourse – Reference Resolution -Text Coherence Discourse Structures - Dialog and Conversational Agents. Dialogue acts - dialogue structure.		
END SEMESTER EXAM		

Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

COURSE NO.	COURSE TITLE	CREDITS	YEAR	
04 CS 7203	ADVANCED COMPILER DESIGN	3-0-0: 3	2015	

Course Objectives:

- To familiarize the fundamentals of Compiler structure
- To study the applications of Local and Global Symbol table management
- To gather information about widely used compilers

Syllabus

Principles of Compiler. Structure of Optimizing compilers. Introduction and Overview – Symbol table structure – Local and Global Symbol table management. Intermediate representation.

Run-time support – Register usage – local stack frame – run-time stack – Code sharing – position– independent code. Procedure optimization – in-line expansion – leaf routine optimization and shrink wrapping. Register allocation and assignment – graph coloring – control flow and low level optimizations - Inter-procedural analysis and optimization – call graph – data flow analysis. Case Studies – Sun Compilers for SPARC – IBM XL Compilers – Alpha compilers – PA –RISC assembly language – COOL.

Course Outcome:

The student will be able to demonstrate Run-time support, Register allocation and assignment of a compiler

Text Books:

1. Steven S Muchnik, "Advanced Compiler Design and Implementation", Morgan Kaufmann publishers, Elsevier Science, India, Indian Reprint 2003.

- 1. Keith D Cooper and Linda Torczon, "Engineering a Compiler", Elsevier Science, India.
- 2. Sivarama P. Dandamudi, "Introduction to Assembly language programming: for Pentium and RISC processors".
- 3. Allen Holub "Compiler Design in C", Prentice Hall of India, 1990.
- 4. Alfred Aho, Ravi Sethi V., Jeffery Ullman D., "Compilers Principles, Techniques and Tools", Addison Wesley, 1988.
- 5. Charles N. Fischer, Richard J. Leblanc, "Crafting a compiler with C", Benjamin-Cummings Publishing Co., Inc. Redwood City, CA, USA.

⁵² *Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science*

COURSE NO:	COURSE TITLE:	CRE	DITS
04 CS 7203	ADVANCED COMPILER DESIGN	3-0-0: 3	
	MODULES (42Hrs)	Contact hours	Sem. Exam Marks;%
MODULE 1		7	15
Importance of	Compiler – Review of Compiler Structure – Optimization – Code optimization – Structure of Optimizing compilers – optimizations in optimizing compilers – ICAN		
MODULE 2		7	15
Symbol table	nd Overview – Symbol table structure – Local and Global management. Intermediate representation – Issues –High level, low level intermediate languages – MIR, HIR, LIR – nediate code.		
	FIRST INTERNAL TEST		
MODULE 3		7	15
Code sharing	oort – Register usage – local stack frame – run-time stack – – position– independent code – Symbolic and polymorphic ort -Optimization – Early optimization – Constant folding		
MODULE 4		7	15
constant prop	ement of aggregates Simplification – value numbering – pagation – redundancy elimination – loop optimization. imization – in-line expansion – leaf routine optimization and lg		
	SECOND INTERNAL TEST		
MODULE 5		7	20
level optimizat – data flow a allocation – glo	tion and assignment – graph coloring – control flow and low cions - Inter-procedural analysis and optimization – call graph analysis –constant propagation – alias analysis – register obal References: – Optimization for memory hierarchy. Code Instruction scheduling – Speculative scheduling –Software		

⁵³ Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science

pipelining – trace scheduling – percolation scheduling		
MODULE 6	7	20
Case Studies – Sun Compilers for SPARC – IBM XL Compilers – Alpha compilers– PA –RISC assembly language – COOL – (Classroom Object oriented language) – Compiler testing tools – SPIM		
END SEMESTER EXAM		

COURSE NO.	COURSE TITLE	CREDITS	YEAR	
04 CS 7205	HUMAN COMPUTER INTERACTION	3-0-0: 3	2015	

Course Objectives:

- Introduces the concepts of HCI Cognitive architecture and Designing human computer interaction principles
- Describes Development process of Human Computer Interaction.

Syllabus

Overview of HCI - Mental models - Cognitive architecture - task loading and stress in HCI -Human error identification. Input technologies. - sensor and recognition based input visual displays Haptic interfaces Non speech auditory output network based interactions .Designing human computer interaction Visual design principles - HCI in healthcare games - older adults - kids - Physical disabilities -Perpetual Impairments - Deaf and Hard of Learning users. Developments process - requirement specification - User experiences and HCI - Usability Engineering life cycle - Task analysis - prototyping tools and techniques - scenario based design - Participatory design - Testing and evaluation - Usability testing - Inspection based evaluation - Model based evaluation

Course Outcome:

The student will be able to demonstrate Development process of Human Computer Interaction.

- 1. The human computer interaction hand book: fundamentals, evolving technologies and emerging applications: Andrew sears, Julie A Jacko, Lawrence Erlbaum Associates (2008)
- 2. Designing the user interface strategies for effective human computer interaction (3rd Ed): Ben Shneiderman Pearson, New Delhi (2004)
- 3. Interaction Design : Beyond human Computer Interaction by Helen Sharp, Yvanno Rogers and Jenny preece, John Wiley (2007)
- 4. Human computer Interaction in the new millennium: John M. Carroll, ACM press (2001)

COURSE NO:	COURSE TITLE:	CRE	DITS
04 CS 7205	HUMAN COMPUTER INTERACTION	3-0	-0: 3
	MODULES(42Hrs)	Contact hours	Sem. Exam Marks;%
stress in HCI -	CI - Mental models - Cognitive architecture - task loading and Human error identification. Input technologies - sensor and sed input visual displays	7	15
Designing hu intercultural u	tes Non speech auditory output network based interactions. Iman computer interaction Visual design principles User interface designs Conversational speech interface terface adaptive interfaces and agents FIRST INTERNAL TEST	7	15
MODULE3		7	15
Tangible user designs of DSS	interfaces Information visualization Human centered Online communities Visual environment. ic design - HCI in healthcare games - older adults - kids	,	15
MODULE 4 Physical disabi users.	ilities - Perpetual Impairments - Deaf and Hard of Learning	7	15
SECOND INTERNAL TEST			
	process - requirement specification - User experiences and Engineering life cycle - Task analysis - prototyping tools and	7	20

		Ó
MODULE 6	7	20
Scenario based design - Participatory design - Testing and evaluation - Usability testing - Inspection based evaluation - Model based evaluation.		
END SEMESTER EXAM		

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 CS 7207	ADVANCED DATABASE MANAGEMENT SYSTEM	3-0-0: 3	2015

Concepts of Database Management System

Course Objectives:

- To familiarize the fundamentals of Database System Architectures
- To understand Object and Object relational databases
- To gather information about widely used Emerging Technologies such as Mobile Databases

Syllabus

Parallel and Distributed Databases: Database System Architectures. I/O Parallelism Three Tier Client Server Architecture- Case Studies .Object and Object relational databases: ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems: Object Relational features in SQL / Oracle – Case Studies .Enhanced Data models: Active Database Concepts and Triggers XML Databases: XML Data Model – DTD - XML Schema - XML Querying - Geographic Information Systems - Genome Data Management. Emerging Technologies: Mobile Databases Mobile Transaction Models –Concurrency Control Mechanism- Transaction Commit Protocols- Mobile database Recovery: Log management in mobile database systems – Mobile database recovery schemes.

Course Outcome:

The student will be able to demonstrate Object relational databases and Mobile databases

- 1. Elmasri R., Navathe S.B., "Fundamentals of Database Systems", Pearson Education/Addison Wesley, Fifth Edition, 2007.
- 2. Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to Design, Implementation and Management", Pearson Education, Third Edition, 2007.
- 3. Henry F Korth, Abraham Silberschatz, Sudharshan S., "Database System Concepts", McGraw Hill, Fifth Edition, 2006.
- 4. Date C.J, Kannan A. and SwamynathanS.,"An Introduction to Database Systems", Pearson Education, Eighth Edition, 2006.
- 5. Raghu Ramakrishnan, Johannes Gehrke, "Database Management Systems", McGraw Hill, Third Edition, 2004.
- 6. Vijay Kumar, "Mobile Database Systems", A John Wiley & Sons, Inc., Publication

COURSE NO:	COURSE TITLE:	CRE	DITS
04 CS 7207	ADVANCED DATABASE MANAGEMENT SYSTEM	3-0	-0: 3
	MODULES(42Hrs)	Contact hours	Sem. Exam Marks;%
MODULE 1		7	15
Centralized and Parallel System	Distributed Databases: Database System Architectures: d Client-Server Architectures – Server System Architectures – ns- Distributed Systems. Parallel Databases: I/O Parallelism – Query Parallelism – Inter and Intra operation Parallelism.		
MODULE 2		7	15
Transactions –	atabase Concepts - Distributed Data Storage – Distributed Commit Protocols – Concurrency Control – Three Tier Client cture- Case Studies.		
FIRST INTERNA	AL TEST		
MODULE 3		7	15
Object Identity Operations –	 oject relational databases: Concepts for Object Databases: / – Object structure – Type Constructors – Encapsulation of Methods – Persistence.Type and Class Hierarchies – Complex Objects – Object Database Standards, Languages 		
MODULE 4		7	15
Systems: Obje	 ODL – OQL – Object Relational and Extended – Relational Relational features in SQL / Oracle – Case Studies. models: Active Database Concepts and Triggers – Temporal 		
SECOND INTER	RNAL TEST		
MODULE 5		7	20
Databases. XN	ses – Multimedia Databases – Deductive Databases – XML /L Data Model – DTD - XML Schema - XML Querying - formation Systems - Genome Data Management		

		Ó
MODULE 6	7	20
Emerging Technologies: Mobile Databases: Location and Handoff Management - Effect of Mobility on Data Management - Location Dependent Data Distribution. Mobile Database Systems - Transaction Execution in MDS- Mobile Transaction Models –Concurrency Control Mechanism- Transaction Commit Protocols- Mobile database Recovery: Log management in mobile database systems – Mobile database recovery schemes.		
END SEMESTER EXAM		

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 CS 7204	BIG DATA ANALYTICS	3-0-0: 3	2015

Course Objectives:

- To familiarize the fundamentals of Bigdata and Data Analysis.
- To understand Stream Computing.
- To gather information about widely used Predictive Analytics and Frameworks.

Syllabus

Introduction to Big Data .Best Practices for Big data Analytics .Big data characteristics Data Analysis Evolution of analytic scalability Cloud computing – grid computing. Analysis approaches – Statistical significance – business approaches – Analytic innovation .Stream Computing:-Introduction to Streams Concepts – Stream data model and architecture - Stream Computing, Sampling data in a stream .Predictive Analytics and Frameworks:- Predictive Analytics – Supervised – Unsupervised learning – Neural networks – Kohonen models. Hadoop. Hive. Sharding.

Course Outcome:

The student will be able to demonstrate Big Data Analysis, Stream Computing and Predictive Analytics and Frameworks

- 1. Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series, 2012.
- 2. Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier, 2007
- 3. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 4. AnandRajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 2012.
- 5. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012.
- 6. Paul Zikopoulos, Chris Eaton, Paul Zikopoulos, "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data", McGraw Hill, 2011.
- 7. Paul Zikopoulos, Dirk deRoos, Krishnan Parasuraman, Thomas Deutsch , James Giles, David Corrigan, "Harness the Power of Big data The big data platform", McGraw Hill, 2012.
- 8. Glenn J. Myatt, Making Sense of Data, John Wiley & Sons, 2007
- 9. Pete Warden, Big Data Glossary, O'Reilly, 2011.

COURSE NO:	COURSE TITLE:	CRE	DITS
04 CS 7204	BIG DATA ANALYTICS	3-0	-0: 3
	MODULES(42Hrs)	Contact hours	Sem. Exam Marks;%
MODULE 1		7	15
Case for Big d Acquisition –	b Big Data:- Analytics – Nuances of big data – Value – Issues – ata – Big data options Team challenge – Big data sources – Nuts and Bolts of Big data. Features of Big Data - Security, uditing and protection - Evolution of Big data		
MODULE 2		7	15
	for Big data Analytics - Big data characteristics - Volume, ocity, Variety – Data Appliance and Integration tools – nformatica		
-	 Evolution of analytic scalability – Convergence – parallel tems – Cloud computing – grid computing 		
	FIRST INTERNAL TEST		
MODULE 3		7	15
methods –ana approaches –	enterprise analytic sand box – analytic data sets – Analytic alytic tools – Cognos – Microstrategy - Pentaho. Analysis Statistical significance – business approaches – Analytic raditional approaches – Iterative		
MODULE 4		7	15
Stream Computing:- Introduction to Streams Concepts – Stream data model and architecture - Stream Computing, Sampling data in a stream – Filtering streams – Counting distinct elements in a stream – Estimating moments – Counting oneness in a window – Decaying window - Realtime Analytics Platform(RTAP) applications IBM Infosphere – Big data at rest – Infosphere streams – Data stage – Statistical analysis – Intelligent SECOND INTERNAL TEST			
MODULE 5		7	20
Predictive Ana	lytics and Frameworks:- Predictive Analytics – Supervised –		

Unsupervised learning – Neural networks – Kohonen models – Normal –		
Deviations from normal patterns – Normal behaviours – Expert options –		
Variable entry - Mining Frequent itemsets - Market based model		
MODULE 6	7	20
Apriori Algorithm – Handling large data sets in Main memory – Limited		
Pass algorithm – Counting frequent itemsets in a stream –Clustering		
Techniques – Hierarchical – K- Means. Framework and applications: Map		
Reduce Framework - Hadoop – Hive – Sharding.		
END SEMESTER EXAM		

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 CS 7211	SEMANTIC WEB	3-0-0: 3	2015

Course Objectives:

- To familiarize the fundamentals of RDF and Querying the Semantic Web
- To understand Ontology movement
- To gather information about Logic and Inference.

Syllabus

Introduction. Semantic web layers .Semantic web technologies - Querying RDF and Querying the Semantic Web SPARQL-Basics-Filters-Constructs-Organizing result sets-Querying schemas. Ontology : Introduction Ontology movement –Ontology engineering : Introduction – Constructing ontologies – Reusing ontologies – On-To-Knowledge semantic web architecture. Logic and Inference : Logic – Description logics - Rules – Monotonic rules: syntax, semantics and examples – Non-monotonic rules – Motivation, syntax, and examples – Rule markup in XML: Monotonic rules - Non-Monotonic rules .Applications of Semantic Web Technologies .

Course Outcome:

The student will be able to demonstrate RDF and Querying the Semantic Web.

Text Books:

1. Grigorous Antoniou and Van Hermelen, A Semantic Web Primer. New Delhi: The MIT Press, 2012.

- 1. James Hendler, Henry Lieberman and Wolfgang Wahlster, Spinning the Semantic Web: Bringing the world wide web to its full potential. New Delhi: The MIT Press, 2005.
- 2. Shelley Powers, Practical RDF. Mumbai: O'reilly publishers, 2004
- 3. Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, Foundations of Semantic Web Technologies, Chapman & Hall/CRC, 2004

COURSE NO:	COURSE TITLE:	CRE	DITS
04 CS 7211	SEMANTIC WEB	3-0	-0: 3
	MODULES(42Hrs)	Contact hours	Sem. Exam Marks;%
MODULE 1		7	15
Introduction: H Semantics in se	History – Semantic web layers –Semantic web technologies – emantic web		
MODULE 2		7	15
	ng – Namespaces – Addressing – Querying-Processing XML. ying the Semantic Web : RDF data model-syntaxes-Adding schema		
	FIRST INTERNAL TEST		
MODULE 3		7	15
result sets-Q	semantic web-SPARQL-Basics-Filters-Constructs-Organizing uerying schemas. Ontology : Introduction – Ontology IWL – OWL specification - OWL elements		
MODULE 4		7	15
	s: Simple and complex – Ontology engineering : Introduction g ontologies – Reusing ontologies – On-To-Knowledge architecture.		
	SECOND INTERNAL TEST		
MODULE 5		7	20
-	ence : Logic – Description logics - Rules – Monotonic rules: tics and examples – Non-monotonic rules – Motivation, amples		
MODULE 6		7	20
	a XML: Monotonic rules - Non-Monotonic rules .Applications eb Technologies .		
	END SEMESTER EXAM		L

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 CS 7213	OBJECT ORIENTED SOFTWARE ENGINEERING	3-0-0: 3	2015

Course Objectives:

- To familiarise the fundamentals of Object Oriented Software Engineering
- To gather information about UML Modeling
- To understandObject Oriented Analysis and Design.

Syllabus

Introduction to Object Oriented Software Engineering: A detailed review of software development activities. Object Oriented Methodologies for Software development.

Introduction to UML Modeling structural things: Class diagram –elements – advance classes and relationships .Object diagram. Modeling Behavior: Activity diagrams- Action and activity states. Object Oriented Analysis: use case driven approach Classification. Object Oriented Design: Design process and design axioms.Designing Classes: class visibility, refining attributes, designing methods and protocols, designing methods, packages.

Course Outcome:

The student will be able to demonstrate Object Oriented Analysis and Design. The student will be able to demonstrate Object Oriented Analysis and Design.

- 1. Ali Bahrami, Object Oriented Systems Development using the Unified Modeling Language, McGraw Hill.
- 2. Booch et al., The UML User Guide, Addison-Wesley.
- 3. Bernd Oestereich, Developing Software with UML, Object-Oriented Analysis and Design in Practice, Addison-Wesley

COURSE NO:	COURSE TITLE:	CRE	DITS
04 CS 7213	04 CS 7213OBJECT ORIENTED SOFTWARE ENGINEERING3-0-0:3		-0: 3
	MODULES(42Hrs)		Sem. Exam Marks;%
MODULE 1 Introduction to Object Oriented Software Engineering: A detailed review of software development activitiesAnalysis, Design, Coding and Testing.Object Oriented Concepts in Software Development- objects, classes, attributes, behavior and methods, data abstraction, encapsulation and information hiding, Generalization, polymorphism, associations, aggregations and object containment		7	15
-	ed Methodologies for Software development-Rambaugh et Modeling Technique, Jacobson's methodology, Booch's FIRST INTERNAL TEST	7	15
	FINJE INTERNAL TEJI		
 advance Links.Modeling relationships.M 	OUML Modeling structural things: Class diagram –elements classes and relationships.Object diagram-Objects and g user's view- Use case diagram – Actors – use cases- Modeling interactions: Interaction diagrams -Sequence ollaboration diagramOrganizing Messages	7	15
join – bran transitions.Mo	Modeling Behavior: Activity diagrams- Action and activity states-fork and		
	SECOND INTERNAL TEST		

⁶⁷ *Kerala Technological University | Cluster 04 | M. Tech Program in Computer and Information Science*

		•
MODULE : 5	7	20
Object Oriented Analysis: use case driven approach Classification: Classification theory, noun phrase approach, common class patterns approach, use-case driven approach, classes, responsibilities, and collaborators, naming classes.Identifying Object Relationships, Attributes And Methods: Association, super-subclass relationships, a-part of relationships, case study- class responsibility, defining attributes , object responsibility, defining methods		
MODULE : 6 Object Oriented Design: Design process and design axioms.Designing Classes: class visibility, refining attributes, designing methods and protocols, designing methods, packages and managing classes.Access Layer: object storage and interoperability.View Layer: Designing interface objects.	7	20
END SEMESTER EXAM		

COURSE NO.	COURSE TITLE	CREDITS	YEAR
04 CS 7215	MOBILE COMMUNICATION NETWORKS	3-0-0: 3	2015

Course Objectives:

- To understand Mobile computing environment
- To describe Mobile Network and Transport Layer

Syllabus

Introduction:Wireless networks,Mobile Telephone Systems, emerging technologies. Broadcast Systems: Overview –Cyclic Repetition of Data-Digital Audio Broadcasting – Digital Video Broadcasting. Location management: Handoff in wireless mobile networks-reference model-handoff schemes. Location management in cellular networks location and tracking management schemes-time, movement, profile and distance based update strategies

Mobile Network and Transport Layer -WAP: WAP push architecture -Datagram Protocol-Transport Layer Security- Transaction Protocol. Session Protocol. Open protocols: Service discovery technologies-SDP, Jini, SLP, UpnP protocols.

Course Outcome:

The student will be able to demonstrate Mobile computing environment.

- 1. Ivan Stojmenovic , Handbook of Wireless Networks and Mobile Computing, John Wiley & sons Inc, Canada, 2002.
- 2. Asoke K Taukder, Roopa R Yavagal, Mobile Computing, Tata McGraw Hill Pub Co., New Delhi, 2005.
- 3. J.Schiller, Mobile Communication, Addison Wesley, 2000.
- 4. William Stallings, Wireless Communication and Networks, Pearson Education, 2003.
- 5. Singhal, WAP-Wireless Application Protocol, Pearson Education, 2003

COURSE NO:	COURSE TITLE:	CRE	DITS
04 CS 7215	MOBILE COMMUNICATION NETWORKS	3-0	-0: 3
	MODULES(42Hrs)	Contact hours	Sem. Exam Marks;%
MODULE 1		6	15
technologies,	Wireless networks, Mobile Telephone Systems, emerging WiFi, WiMAX, 3G-Telecommunications: GSM-DECT-TETRA– 00. Satellite Systems: Basics-Routing-Localization-Handover		
MODULE : 2		6	15
	tems: Overview –Cyclic Repetition of Data-Digital Audio Digital Video Broadcasting.		
	mputing environment: Functions-architecture-design , content architecture -CC/PP exchange protocol, context		
	FIRST INTERNAL TEST		
MODULE : 3		6	15
model-handof location and t	agement: Handoff in wireless mobile networks-reference f schemes. Location management in cellular networks - racking management schemes-time, movement, profile and I update strategies.		
MODULE : 4		6	15
	ork and Transport Layer -WAP: WAP push architecture - ocol-Transport Layer Security- Transaction Protocol		
	SECOND INTERNAL TEST		
MODULE : 5		9	20
	ol-Application Environment, Wml scripts and applications – hony Application.		
MODULE : 6		9	20
protocols-data	ols: Service discovery technologies-SDP, Jini, SLP, UpnP a synchronization-Sync ML framework -Context aware s -Context aware sensor networks-Context aware security		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 6291/7291	SEMINAR	0-0-2: 2	2015

Course Objectives:

- 1. Improve the technical presentation skills of the students.
- 2. To train the students to do literature review.
- 3. To impart critical thinking abilities.

Methodology

Individual students are required to choose a topic of their interest from related topics to the stream of specialization, preferably from outside the M. Tech syllabus. The students are required to do a moderate literature review on the topic and give seminar. A committee consisting of at least three faculty members (preferably specialized in the respective stream) shall assess the presentation of the seminar and award marks to the students based on merits of topic of presentation. Each student shall submit two copies of a write up of his seminar topic. The seminar report shall not have any plagiarised content (all sources shall be properly cited or acknowledged). One copy shall be returned to the student after duly certifying it by the chairman of the assessing committee and the other shall be kept in the departmental library. Internal continuous assessment marks are awarded based on the relevance of the topic, presentation skill, quality of the report and participation. It is encouraged to do simulations related to the chosen topic and present the results at the end of the semester.

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 CS 7293	PROJECT PHASE - I	0-0-12:6	2015

Course Objectives:

The project work aims to develop the work practice in students to apply theoretical and practical tools/techniques to solve real-life problems related to industry and current research.

The project work can be a design project/experimental project and/or computer simulation project on any of the topics related to the stream of specialisation. The project work is chosen/allotted individually on different topics. Work of each student shall be supervised by one or more faculty members of the department. The students shall be encouraged to do their project work in the parent institute itself. If found essential, they may be permitted to carry out their main project outside the parent institute, subject to the conditions specified in the M. Tech regulations of the Kerala Technological University. Students are encouraged to take up industry problems in consultation with the respective supervisors.

The student is required to undertake the main project phase-1 during the third semester and the same is continued in the 4th semester (Phase 2). Phase-1 consist of preliminary work, two reviews of the work and the submission of a preliminary report. First review would highlight the topic, objectives, methodology and expected results. Second review evaluates the progress of the work, preliminary report and scope of the work which is to be completed in the 4th semester.

COURSE CODE	COURSE NAME	L-T-P: C	YEAR
04 CS 7294	PROJECT PHASE - II	0-0-21: 12	2015

Main project phase II is a continuation of project phase-I started in the third semester. There would be two reviews in the fourth semester, first in the middle of the semester and the second at the end of the semester. First review is to evaluate the progress of the work, presentation and discussion. Second review would be a pre -submission presentation before the evaluation committee to assess the quality and quantum of the work done. It is encouraged to prepare at least one technical paper for possible publication in journals or conferences. The project report (and the technical paper(s)) shall be prepared without any plagiarised content and with adequate citations, in the standard format specified by the Department /University.